
ROS Reality: A Virtual Reality Framework Using Consumer-Grade
Hardware for ROS-Enabled Robots

David Whitney1, Eric Rosen1, Daniel Ullman1, Elizabeth Phillips1, Stefanie Tellex1

Abstract— Virtual reality (VR) systems let users intuitively
interact with 3D environments and have been used extensively
for robotic teleoperation tasks. While more immersive than
their 2D counterparts, early VR systems were expensive and
required specialized hardware. Fortunately, there has been a re-
cent proliferation of consumer-grade VR systems at affordable
price points. These systems are inexpensive, relatively portable,
and can be integrated into existing robotic frameworks. Our
group has designed a VR teleoperation package for the Robot
Operating System (ROS), ROS Reality, that can be easily
integrated into such frameworks. ROS Reality is an open-
source, over-the-Internet teleoperation interface between any
ROS-enabled robot and any Unity-compatible VR headset. We
completed a pilot study to test the efficacy of our system,
with expert human users controlling a Baxter robot via ROS
Reality to complete 24 dexterous manipulation tasks, compared
to the same users controlling the robot via direct kinesthetic
handling. This study provides insight into the feasibility of
robotic teleoperation tasks in VR with current consumer-grade
resources and exposes issues that need to be addressed in these
VR systems. In addition, this paper presents a description of
ROS Reality, its components, and architecture. We hope this
system will be adopted by other research groups to allow
for easy integration of VR teleoperated robots into future
experiments.

I. INTRODUCTION

Virtual reality (VR) provides a compelling interface for
robots because it enables fluid interactions in the real physi-
cal world, and allows users to specify points and transforms
in an intuitive way. VR interfaces provide potential for tele-
operation, robot teaching and learning from demonstration,
as well as debugging and fixing problems on the robot
remotely.

A major benefit of VR systems is that they allow non-
expert users to control robots. A direct mapping of robot
manipulators to VR hand controllers creates an interface in
which manipulators act as extensions of the users’ hands.
This human-system interface can allow everyday users to
intuitively perform a variety of dexterous robot manipulation
tasks without extensive training. On the other hand, many
tasks require fine-grained manipulation which necessitates
expert performance, taking time to acquire such experience.
Thus, VR interfaces may also be a means to leverage the
proficiency of expert human users to facilitate robots learn-
ing complex, fine-grained manipulation tasks. VR therefore
permits non-experts to control robots, as well as leverages
experts’ experience in challenging domains.

1Brown University. {david whitney, eric rosen,
daniel ullman, elizabeth phillips1}@brown.edu,
stefie10@cs.brown.edu

Fig. 1. Top image: An operator using ROS Reality VR to teleoperate a
Baxter to fold a shirt. Bottom image: View of scene from VR headset. Note
a point cloud, mesh model of robot, VR controllers, and wrist camera feeds
from robot are all visible to the user.

However, integrating robots with a VR system is challeng-
ing. There is no standard interface to connect ROS [12] to
standard virtual reality paradigms, such as Unity, so that it
can be used with consumer-grade hardware, such as the HTC
Vive. Additionally there is a lack of standardization in terms
of tasks and use cases for these systems.

With this in mind, we present ROS Reality. ROS Reality
is a VR and Augmented Reality (AR) teleoperation interface
using consumer-grade VR and AR hardware with ROS-
enabled robots. It allows users to view and control robots
over-the-Internet using consumer-grade VR and AR hard-
ware. ROS Reality has served as the technical basis for the
VR research in Whitney et al. [18], and for the AR research
in Rosen et al. [13]. A VR teleoperation demonstration using
ROS Reality is shown in Fig. I. In this work, we focus on
the VR system architecture and application of ROS Reality.



In this work, we detail our consumer-grade VR and AR
teleoperation interface, ROS Reality. We discuss how the
package allows for a ROS-networked robot, like Baxter
from Rethink Robotics, to bilaterally communicate over the
Internet with an HTC Vive through the Unity game engine.
We also present the results of a pilot study conducted to
test the efficacy of using ROS Reality to teleoperate a robot
to perform 24 dexterous manipulation tasks. Portions of this
work previously appeared in an extended abstract by Rosen
et al. [14].

II. RELATED WORK

Teleoperation enables robots to complete tasks that would
otherwise be too difficult to complete autonomously, such
as in the DARPA Robotics Challenge [5], and also allows
humans to operate by proxy in environments that would
normally place them in harm’s way [1].

2D interfaces for robot teleoperation, especially over the
Internet, have been popular in recent years [6]. Monitor and
keyboard setups have been used to control robots for a variety
of classical tasks, like motion planing and item grasping
[16]. Further, web browsers have proven especially useful
in allowing anyone around the world with a computer to
teleoperate a robot, broadening the user-base of operators
[11]. However, 2D monitor interfaces do not reflect the
natural way that humans observe and interact with the 3D
world. Our research has shown that a VR interface can
address this problem as non-exert users were faster, more
efficient, and preferred using a VR interface over a 2D
monitor interface for teleoperating a robot [17].

Virtual reality interfaces and gantry systems offer intuitive
means to directly map a user’s actions to those of the
robot they are controlling [17]. For example, the da Vinci
Robot System is an immersive haptic telesurgery system
which has improved surgical performance for both novice
and experienced users [2]. Although powerful, the da Vinci
robot and its interface is very task-specific to the surgical
domain and stationary. Mallwitz et al. [10] developed a
portable and easily-dressable exoskeleton that allowed a
human user to naturally teleoperate a complex humanoid
robot. This system is very intuitive to control, but again is
limited to specific robots and is extremely expensive, heavily
limiting the potential operator-base compared to web-based
interfaces.

Recent advancements in graphics have made commercially
available VR systems accessible to the gaming community.
Systems like the HTC Vive, Oculus Rift, and Google Card-
board offer cheap and portable VR hardware. As a result, lab
researchers have recently begun exploring these VR systems
for robot teleoperation. Zhang et al. [20] used an HTC Vive
to teleoperate a PR2 and perform imitation learning. Lipton
et al. [9] also used a commercially available VR system for
performing teleoperation on a Baxter. Our previous work [17]
on comparing VR to 2D teleoperation systems also used
an HTC Vive for the VR interface, enabled through ROS
Reality. By having labs use the same VR systems, results
and interfaces are easier to duplicate.

The proliferation of consumer-grade VR systems is very
recent, so there has been little research on the efficacy of
teleoperation interfaces that use this technology (e.g., [20]).
Although task completion depends heavily on interface type
and the particular robot, we were interested in exploring
what complex tasks could be completed on our open-source
software using a common research robot.

Our choice of objects and manipulation tasks to evaluate
on was inspired by previous work on robot task benchmarks.
Kasper et al. [8] created a program to generate an open-
database of over 100 object models to be used for evaluating
recognition, localization, and manipulation capabilities in
service robots. Goldfeder et al. [7] released a collected
dataset of items and stable grasps as a means for conducting
machine learning and benchmarking grasp planning algo-
rithms. One notable benchmark is the YCB object and model
set, which is a set of accessible items chosen to include a
wide range of common object sizes, shapes, and colors to
test a variety of robot manipulation skills using accepted
protocols [3]. The YCB dataset has made it easy and cheap
for any research lab to evaluate a robot manipulator on
general tasks over a large object dataset. Several of the tasks
performed in this paper come from the YCB dataset.

III. ROS REALITY

This section first provides a brief synopsis of interacting
with a robot in virtual reality, and then a technical description
of ROS Reality1.

A. VR as a Teleoperation Interface

The two most common virtual reality systems today are
the Oculus Rift and the HTC Vive. Our group develops with
the HTC Vive due to superior room-scale tracking, but the
following description of how to use VR as a teleoperation
interface applies to both systems.

There are multiple ways of displaying the robot’s state to
the user, and mapping the user’s input to the robot. We bin
these different methods into two main categories: egocentric
or robocentric.

In egocentric models, the human is the center of the virtual
world, and virtually inhabits the same space as the robot.
Lipton et al. [9]’s homunculus work and Zhang et al. [20] are
examples of this egocentric mapping. Under these conditions,
human users have reported feeling like they ‘become the
robot’ or ‘see out of the robot’s eyes’.

In a robocentric model, the human and robot share a virtual
space, but are not necessarily superimposed on one another.
The model we used for evaluating ROS Reality [17], falls
into this category. Under this model, the human walks around
a virtual model of the robot, and controls its arms by virtually
grabbing and dragging them. We therefore call this model a
virtual gantry system.

1Full source code is available at https://github.com/h2r/ros_
reality

https://github.com/h2r/ros_reality
https://github.com/h2r/ros_reality


LEGEND

UNITY SCENE ROS

Left Controller

IK Status
RGB Feed

Arm Controller

Hardware

Game
Object

ROS
Node

ROS
Topic

Right Controller

IK Status
RGB Feed

Arm Controller

Head
Mounted 
Display

Offline 
Assets

Virtual
Kinnect

Websocket
Client

Transform
Listener

Virtual
Robot

URDF
Parser

Steam 
VR

ROS
Bridge

Color
Image

Depth
Image

Compressed
TF

RGB
Feed

IK
Status

Joint
State

Publisher

Target
Pose

IAI
Kinect

Transform
Compressor

Transform

Fig. 2. A diagram detailing the architecture of the ROS Reality system

B. System Overview

An HTC Vive is connected to a computer running the
Unity game engine. Unity builds a local copy of our robot
based on its URDF with a custom-made URDF parser. Unity
connects to a ROS network over the Internet via a Rosbridge
WebSocket connection [4]. The pose and wrist cameras of the
robot are sent via this WebSocket connection, as well as the
color and depth image of a Kinect 2 mounted to the robot’s
head. The color and depth image are built into a point cloud
in Unity via a custom shader. When the user holds down a
deadman’s switch, the pose of the user’s controllers are sent
back to the robot, which uses an inverse kinematics solver to
move the robot’s end effectors to the specified poses. Refer
to Fig. 2 for a visual overview of the ROS Reality system.

C. ROS

ROS (Robot Operating System) is a set of tools and
libraries to help program robot applications. ROS connects
processes of programs, known as nodes, that perform differ-
ent functions. Nodes communicate by streaming data over
channels, or topics, on a local TCP network, known as a ROS
network. Nodes create publisher objects to publish data over
the network on a topic, or subscriber objects to subscribe
to a topic. ROS provides an API to create nodes in C++ or
Python. All nodes written for ROS Reality were written in
Python.

ROS Reality launches a Kinect2 ROS node [19], two RGB
camera feeds (one for each wrist camera of the robot), a
Rosbridge WebSocket server [4], a custom ROS node that
converts the full transform (TF) of the robot to a compact
string, and another ROS node that listens for target poses
from the VR systems, queries the robot’s Inverse Kinematic

(IK) solver, and moves the robot to the IK solution if found,
or reports an IK failure if one is not found.

D. HTC Vive

The HTC Vive is a consumer-grade virtual reality sys-
tem. It has three tracked objects: one head-mounted display
(HMD), and two wand controllers. Each device is tracked
via a set of two infrared pulse laser emitters, known as light-
houses, allowing for tracking via time-of-flight calculations2.
Each tracked object is positionally and rotationally tracked,
with roughly 1-2mm of error. The wand controllers are fully
wireless, and the HMD connects to a computer via a USB
and HDMI cable. Each controller has a touch-pad, trigger,
and two buttons for user input.

The HTC Vive supports several game and physics engines,
but the initial (and in our opinion best supported) develop-
ment platform is Unity3. The Vive connects to Unity through
a software package called SteamVR.

E. Unity

Unity is a game engine that is used for many popular
2D, 3D, and Virtual/Augmented/Mixed Reality applications.
It has a built-in physics engine that can handle contact
dynamics, as well as material simulation (such as water, sand,
or cloth). It supports integration with most common VR (and
AR) hardware, and provides a shader language for writing
custom GPU shaders.

An open Unity environment is called a scene. In this scene
are a collection of the atomic unit of Unity, the GameObject.
Attached to each GameObject are a set of Components.

2The Oculus Rift uses multiple cameras to track the HMD and controllers.
3Formally known as Unity3D.



Fig. 3. An image of the PR2 robot visualized in Unity from the URDF
Parser of ROS Reality.

Fig. 4. An image of the Baxter robot visualized in Unity from the URDF
Parser of ROS Reality.

There are dozens of types of components, but the most
important for our purposes is the script. A script is a small
C# program that is executed at every rendering frame. The
functionality of ROS Reality is implemented via a set of
these Unity scripts.

F. ROS Reality

ROS Reality is a set of programs that allows a user to view
and control a ROS-enabled robot over-the-Internet in VR.
ROS Reality is composed of a set of C# scripts, described

below.
1) WebSocket Client: This script is a C# implementation

of the default Rosbridge client, roslibjs [15]. It supports
advertising, subscribing, and publishing to ROS topics. All
messages are sent and received in a JSON format, and data
is encoded in base64 as per the Rosbridge specification.

2) URDF Parser: This script parses a Unified Robot
Description Format (URDF) file and builds a hierarchy of
GameObjects which comprise the robot. URDF is an XML-
based specification for representing robot models common to
all ROS-enabled robots. URDFs include information about
each part of the robot, known as links, and how the links of
a robot are connected, known as joints. The URDF Parser
creates a GameObject for each link, and connects them
according to the joints. Currently, we have successfully tested
our URDF parser with a PR2, and Baxter, as seen in Figs.
3 and 4.

The virtual robot has physical properties that can be
simulated via Unity’s physics engine. This allows the robot
to interact with other GameObjects, useful for practicing
teleoperation interactions in simulated scenarios.

3) Transform Listener: The Transform Listener sub-
scribes to (a compact representation of) the robot’s transform
(TF) and moves the virtual robot to the same pose as the
real robot. The ROS TF topic has the position and rotation
(represented as a quaternion) of each link, which this script
reads and applies to each link of the simulated robot.

One difficulty in doing this is that ROS and Unity use
different coordinate frames. The Transform Listener there-
fore first converts the ROS positions and rotations via the
following equations.

Positions:

xunity = −xros (1)
yunity = zros (2)
zunity = −yros (3)

and rotations:

qxunity = qxros (4)
qyunity = −qzros (5)
qzunity = qyros (6)
qwunity = qwros (7)

4) RGB Camera Visualizer: To visualize camera feeds
from the robot, this script subscribes to a specified camera
topic. When it receives the camera image it converts it from
base64 and textures a plane GameObject with the camera
feed. The plane GameObject is attached to the user’s wand
controller, so the user can always see it during manipulation.
This script supports images in JPG or PNG formats, but ROS
Reality always uses JPG for bandwidth reasons.

5) Kinect PointCloud Visualizer: The Kinect PointCloud
Visualizer script uses a GPU shader to construct a point
cloud out of the RGB camera image and raw depth map



from a Kinect 2. The script subscribes to the RGB and depth
topics of the Kinect and passes them as textures to a custom
geometry shader. This shader creates a colored quad for each
pair of pixels in the RGB and depth images. The color of the
quad is simply the color of the associated RBG pixel. The
position must be calculated. Each pixel in the depth image
is the distance in millimeters of that pixel from the camera
plane, so first we convert from millimeters to meters, and
calculate the position of the quad relative to the camera. We
then multiply that position by the transformation matrix of
the Kinect in the Unity scene to get the world space position
of the quad. The world space position is finally multiplied
by the view and projection matrices, and passed to the vertex
shader.

6) Arm Controller: This script allows the user to send
target end effector coordinates to the robot. When a dead-
man’s switch is held down (the side grip buttons on an HTC
Vive) the current position and orientation of the controller
are converted from the Unity coordinate frame to the ROS
coordinate frame and published over a topic to a node in
the ROS network that queries the robot’s built in IK solver
and moves the robot if a solution is found. Additionally, this
script lets the user open and close the gripper with the trigger
of the wand controller. This is also accomplished by sending
a message over a topic to the robot.

The conversion from Unity to ROS for positions can be
inferred from equations 1, 2, 3, and for rotation is calculated
via the following quaternion operation:

(qx, qy, qz, qw)ros = (qx, qz,−qy, qw)unity ∗ (0, 1, 0, 0)
(8)

7) IK Status Visualizer: This script subscribes to the
current status of the robot’s IK solver and turns the users
wand controller red if the IK solver failed. This lets the user
know if the target position they sent to the robot cannot be
reached.

G. Robot

We use a Baxter from Rethink Robotics. Baxter is a robot
designed for industrial automation applications, also serving
as a useful research platform. Baxter has a fixed base and
display screen head, with two 7 DoF arms and grippers with
force sensing that enable Baxter to dexterously manipulate a
variety of objects. We attached rubber grips that come in the
Baxter toolkit in order to maximize the friction at the end
effector.

We have also connected ROS Reality to a simulated PR2
in Gazebo, and have been able to watch the robot move in
real time, but have not yet set up the infrastructure to control
that robot.

IV. LONG-DISTANCE TELEOPERATION TRIAL

In order to test the efficacy of ROS Reality for long-
distance teleoperation, we had a human operator control a
robot 41 miles away, at a separate university. In this trial,
we were able to successfully stack 12 cups back to back, as

well as play a short game of chess by picking and placing
pieces. The user reported no lag or bandwidth issues.

V. VR TELEOPERATION TASK FEASIBILITY

We considered desirable skills for a manipulator robot to
have. Our goal was to answer two questions:

1) Is the robot physically capable of performing certain
tasks?

2) If so, can a human teleoperating the robot in VR
complete this task?

Because the physical capabilities of the robot depends on
the hardware, our specific study used a research Baxter robot.
Refer to Section III-G for more information.

In order to answer these two questions, two authors of
this paper acted as the expert teleoperators for performing
the trials. For question one, we physically moved the robot’s
arms in real life to complete the task. Direct manipulation
of the robot’s arms gives users the best perception of the
scene, along with direct haptic feedback from the robot
and the environment. We used this methodology of Direct
Manipulation in our previous VR study as a good measure
for task feasibility [17]. For question two, we used our ROS
Reality interface mentioned in Section III to perform VR
teleoperation to complete the tasks.

Baxter’s 7 DoF arms are equipped with parallel electrical
grippers at the end effector, such that Baxter is effectively
able to grip, push, pull, and rotate objects. However, Baxter’s
ability to grip objects is limited by the nature of its parallel
electrical grippers, as well as the ability of its arms to exert
push and pull forces.

We derived a set of 24 tasks by choosing different common
manipulation tasks that could be relevant for manipulator
robots in a variety of domains (e.g., home personal assistant
uses, socially assistive applications), while simultaneously at-
tempting to pick tasks that we believed possible to implement
on Baxter. Two groups of tasks were chosen, such that one
half of the tasks could be completed using one manipulator
and the other half required use of both manipulators at
the same time. In addition, tasks were chosen to represent
an array of different movements (i.e., grip, push, pull, and
rotate).

For each task performed via direction control and via ROS
Reality, we performed a maximum of 5 attempts to complete
the task. A given task was deemed feasible if we were able
to complete it at least once. We report our results for the
tasks in Table I and Fig. V-B.

A. Manipulation Tasks

1) Block Stacking - Stack ten 3x3cm wood blocks in a
column.

2) Unscrew Bottle - Unscrew the cap to a bottle.
3) Uncap Marker - Remove cap from an Expo marker.
4) Hinge Board - Open all six latches on Melissa and

Doug Latches Wooden Activity Board.
5) Stir Pot - Stir a wooden spoon in a metal pot.
6) Push Spacebar - Push the spacebar button on a key-

board.



TABLE I
TASK FEASIBILITY EVALUATIONS

List of tasks and performances. One manipulator tasks are above the
line, while two manipulator tasks are below the line.

Task Task Number Direct? VR?

Block Stacking 1 Yes No
Unscrew Bottle 2 No -
Uncap Marker 3 Yes Yes
Hinge Board 4 No -

Stir Pot 5 Yes Yes
Push Spacebar 6 Yes Yes

Move Checker Piece 7 Yes Yes
Squeeze Purell 8 Yes Yes

Insert Connect 4 Piece 9 Yes Yes
Toss and Catch Ball 10 No -

Use Fork 11 Yes Yes
Unzip Zipper 12 No -

Open Chips 13 No -
Carry plate 14 Yes Yes

Open Glass Bottle 15 No -
Peel Potato 16 Yes No

Uncap Marker 17 Yes Yes
Dust Pan 18 Yes Yes
Fold Shirt 19 Yes Yes

Handover Expo 20 Yes Yes
Open Box 21 Yes Yes

Tap a Paradiddle 22 Yes Yes
Toss and Catch Ball 23 No -

Tie Shoelace 24 No -

7) Move Checker Piece - Pick and place a checker piece
on a board.

8) Squeeze Purell - Squeeze out Purell from the bottle.
9) Insert Connect 4 Piece - Insert a Connect 4 piece into

the slot.
10) Toss and Catch Ball - Toss a juggling ball up and catch

it in the same hand.
11) Use Fork - Get a piece of food onto a plastic fork.
12) Unzip Zipper - Unzip a loose zipper.
13) Open Chips - Open a plastic bag of chips.
14) Carry Plate - Carry a plate with an item on it from

one location to another.
15) Open Glass Bottle - Use a bottle opener to open a glass

bottle.
16) Peel Potato - Use a peeler to peel the skin of a potato.
17) Uncap Marker - Remove cap from an Expo marker.
18) Dust Pan - Use a dust pan to sweep small blocks.
19) Fold shirt - Fold a T-shirt.
20) Handover Expo - Handover a pen from one manipula-

tor to the other.
21) Open Box - Open a shoebox.
22) Tap a Paradiddle - Tap to the rhythm of paradiddle.
23) Toss and Catch Ball - Toss a ball from one manipulator

and catch in other.
24) Tie Shoelace - Tie a shoelace into a knot.

B. Discussion

Overall, VR control of the Baxter robot via ROS Reality
was a success. For single manipulator tasks, eight out of
twelve were achieved through direct manipulation, with
seven of those eight tasks achieved through VR. For the two

manipulator tasks, eight out of twelve were also achieved
through direct manipulation, and again, seven of those eight
tasks were completed through VR.

The two expert teleoperators who attempted the trials in
VR reported a relative ease of use of the system, with several
observations of note. In general, the direct kinesthetic manip-
ulation of the robot permitted the easiest, fastest completion
of tasks for the tasks that proved physically possible for
the robot. This is unsurprising, given the familiar nature of
guiding a human on how to physically move to perform
a task, as well as getting to directly observe the robot’s
workspace. The users found VR most useful when the task
required complex movements of the robot’s joints. During
direct manipulation, resistance in the robot’s manipulators
forced the operators to use two hands to move the robot’s
limb. This meant the operator could effectively only move
one manipulator at a time, and had to extend a fair amount
of force to move the manipulator to a complex position.
By contrast, in VR the user does not have to constantly
parametrize joint angles of the robot, instead specifying end
effector pose and having the robot calculate and navigate the
correct trajectory.

Our trials revealed that force exerted by the robot was a
limiting factor in whether or not tasks could be completed
in the first place, with the robot unable to generate sufficient
force for certain tasks (e.g., toss and catch ball, open chips).
However, manipulation tasks that did not require substantial
force were largely successful. Rotation did not pose a major
obstacle to task completion. Manipulation tasks requiring
dexterous grasping were also limited by the parallel electrical
grippers on the robot used in our evaluation but are likely
to be much easier for robots with higher DoF end effectors.
Finally, the robot’s built-in collision detection system pre-
vented completion of the two manipulator task of opening
the bag of chips, with the system preventing the robot’s arms
from coming close enough to grip the bag of potato chips
on both sides of the bag.

VI. FUTURE RESEARCH

The system described in this paper serves as the foun-
dation for a host of future research. For instance, Learning
from Demonstration (LfD) is a popular approach to teach
robots complex manipulation tasks because it utilizes human
expertise, judgment, and decision making. However, obtain-
ing demonstrations from human participants in laboratory
studies is both time and resource intensive. An approach
to addressing this problem has been to develop algorithms
that require fewer and fewer demonstrations from humans;
which is challenging, and will inevitably require at least one,
if not more, demonstrations by human users with physical
robots. Even with this solution, at some point for most tasks,
users will have to interact with robots to help train them.
However, using VR as a mechanism to gather LfD data at
scale is a promising alternative. Learning complex tasks from
task experts can be challenging for autonomous systems,
with VR sidestepping this issue by enabling users to directly
control systems while leveraging the benefits of the system.



Fig. 5. The results of the VR task attempts. Green outlines indicates task was completed in VR, red outlines indicates that the task failed in VR.

Demonstrations could be provided to virtual robots by users
accessed over the Internet in a crowdsourcing paradigm,
completing tasks at scale, and thus addressing participant and
resource limitations that currently plague extant LfD training
methods. VR coupled with ROS Reality has the potential to
offer a cost and time-effective solution to this challenge.

VII. CONCLUSION

Virtual reality is becoming increasingly available to ev-
eryday users, as hardware platforms steadily decrease in
cost. These systems also represent an intuitive interface for
controlling robots. In this paper we offer an open-source
VR teleoperation package, ROS Reality, that makes any
ROS-enabled robot controllable by any Unity-compatible VR
headset. This work also identifies and tests robot manipu-
lation tasks using ROS Reality with a consumer-grade VR
headset.

REFERENCES

[1] Carlos Beltrán-González, Antonios Gasteratos, Angelos
Amanatiadis, Dimitrios Chrysostomou, Roberto Guz-
man, András Tóth, Loránd Szollosi, András Juhász, and
Péter Galambos. Methods and techniques for intelligent
navigation and manipulation for bomb disposal and res-
cue operations. In Safety, Security and Rescue Robotics,
2007. SSRR 2007. IEEE International Workshop on,
pages 1–6. IEEE, 2007.

[2] John C Byrn, Stefanie Schluender, Celia M Divino,
John Conrad, Brooke Gurland, Edward Shlasko, and
Amir Szold. Three-dimensional imaging improves
surgical performance for both novice and experienced
operators using the da vinci robot system. The Ameri-
can Journal of Surgery, 193(4):519–522, 2007.

[3] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha
Srinivasa, Pieter Abbeel, and Aaron M Dollar. The
ycb object and model set: Towards common bench-
marks for manipulation research. In Advanced Robotics
(ICAR), 2015 International Conference on, pages 510–
517. IEEE, 2015.

[4] Christopher Crick, Graylin Jay, Sarah Osentoski, Ben-
jamin Pitzer, and Odest Chadwicke Jenkins. Rosbridge:
Ros for non-ros users. In Robotics Research, pages
493–504. Springer, 2017.

[5] Christopher M Dellin, Kyle Strabala, G Clark Haynes,
David Stager, and Siddhartha S Srinivasa. Guided
manipulation planning at the darpa robotics challenge
trials. In Experimental Robotics, pages 149–163.
Springer, 2016.

[6] Ken Goldberg, Michael Mascha, Steve Gentner, Nick
Rothenberg, Carl Sutter, and Jeff Wiegley. Desktop
teleoperation via the world wide web. In Robotics and
Automation, 1995. Proceedings., 1995 IEEE Interna-
tional Conference on, volume 1, pages 654–659. IEEE,
1995.

[7] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Pe-
ter K Allen. The columbia grasp database. In Robotics
and Automation, 2009. ICRA’09. IEEE International
Conference on, pages 1710–1716. IEEE, 2009.

[8] Alexander Kasper, Zhixing Xue, and Rüdiger Dill-
mann. The kit object models database: An object
model database for object recognition, localization and
manipulation in service robotics. The International
Journal of Robotics Research, 31(8):927–934, 2012.

[9] Jeffrey I Lipton, Aidan J Fay, and Daniela Rus. Baxter’s
homunculus: Virtual reality spaces for teleoperation in
manufacturing. IEEE Robotics and Automation Letters,



3(1):179–186, 2018.
[10] Martin Mallwitz, Niels Will, Johannes Teiwes, and

Elsa Andrea Kirchner. The capio active upper
body exoskeleton and its application for teleopera-
tion. In Proceedings of the 13th Symposium on Ad-
vanced Space Technologies in Robotics and Automa-
tion. ESA/Estec Symposium on Advanced Space Tech-
nologies in Robotics and Automation (ASTRA-2015).
ESA, 2015.

[11] Gunter Niemeyer and Jean-Jacques E Slotine. Toward
bilateral internet teleoperation. Beyond Webcams: An
Introduction to Online Robots, page 193, 2002.

[12] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully Foote, Jeremy Leibs, Rob Wheeler, and An-
drew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[13] Eric Rosen, David Whitney, Elizabeth Phillips, Gary
Chien, James Tompkin, George Konidaris, and Stefanie
Tellex. Communicating Robot Arm Motion Intent
Through Mixed Reality Head-mounted Displays. In
International Symposium on Robotics Research, 2017
in press.

[14] Eric Rosen, David Whitney, Elizabeth Phillips, Daniel
Ullman, and Stefanie Tellex. Testing Robot Teleopera-
tion using a Virtual Reality Interface with ROS Reality.
Human-Robot Interacton (HRI), 2018 Workshop on
Virtual, Augmented and Mixed Reality, 2018.

[15] Russell Toris, Julius Kammerl, David V Lu, Jihoon Lee,
Odest Chadwicke Jenkins, Sarah Osentoski, Mitchell
Wills, and Sonia Chernova. Robot web tools: Efficient
messaging for cloud robotics. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Confer-
ence on, pages 4530–4537. IEEE, 2015.

[16] Jean Vertut. Teleoperation and Robotics: Applications
and Technology, volume 3. Springer Science & Busi-
ness Media, 2013.

[17] David Whitney, Eric Rosen, Elizabeth Phillips, George
Konidaris, and Stefanie Tellex. Comparing robot grasp-
ing teleoperation across desktop and virtual reality with
ros reality. 2017.

[18] David Whitney, Eric Rosen, Elizabeth Phillips, George
Konidaris, and Stefanie Tellex. Comparing Robot
Grasping Teleoperation across Desktop and Virtual
Reality with ROS Reality. In International Symposium
on Robotics Research, 2017 in press.

[19] Thiemo Wiedemeyer. IAI Kinect2. https://
github.com/code-iai/iai_kinect2, 2014 –
2015. Accessed June 12, 2015.

[20] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Ken Goldberg, and Pieter Abbeel. Deep imitation
learning for complex manipulation tasks from virtual
reality teleoperation. arXiv preprint arXiv:1710.04615,
2017.

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2

	INTRODUCTION
	Related Work
	ROS Reality
	VR as a Teleoperation Interface
	System Overview
	ROS
	HTC Vive
	Unity
	ROS Reality
	WebSocket Client
	URDF Parser
	Transform Listener
	RGB Camera Visualizer
	Kinect PointCloud Visualizer
	Arm Controller
	IK Status Visualizer

	Robot

	Long-Distance Teleoperation Trial
	VR Teleoperation Task Feasibility
	Manipulation Tasks
	Discussion

	Future research
	Conclusion

