
PiDrone: An Autonomous Educational Drone using Raspberry Pi and
Python

Isaiah Brand1∗, Josh Roy2∗, Aaron Ray3, John Oberlin4, Stefanie Tellex5

Abstract— A compelling robotics course begins with a com-
pelling robot. We introduce a new low-cost aerial educational
platform, the PiDrone, along with an associated college-level
introductory robotics course. In a series of projects, students
incrementally build, program, and test their own drones to
create an autonomous aircraft capable of using a downward
facing RGB camera and infrared distance sensor to visually
localize and maintain position. The PiDrone runs Python
and the Robotics Operating System (ROS) framework on an
onboard Raspberry Pi, providing an accessible and inexpensive
platform for introducing students to robotics. Students can
use any web and SSH capable computer as a base station
and programming platform. The projects and supplementary
homeworks introduce PID control, state estimation, and high-
level planning, giving students the opportunity to exercise their
new skills in an exciting long-term project.

I. INTRODUCTION

The increasing prevalence of robotic and autonomous
systems in everyday life increases the demand for engineers
to develop and produce these systems, and also generates a
need for more people to understand these technologies and
their impact on society.

While there are a variety of robotics courses currently
offered in universities worldwide, many of these courses
are targeted at advanced undergraduate or graduate students.
The wide range of prerequisite knowledge required for these
classes is necessary for some interesting applications in
robotics, but the high barrier to entry prevents many students
from taking these courses and being exposed to the field.
Generally, courses that take a more introductory approach
either use simulation or ground robots in restricted domains.
While these simplified architectures and environments serve
to introduce specific tools used in robotics, they often fail to
prepare students for the challenges and complexity associated
with robotics in the real world.

The choice of a flying platform provides an opportunity
to teach lessons about robot safety and potential impacts
on society, as well as concrete skills for a growing aerial
robotics industry. The novelty and potential capabilities of
a flying platform also serve to keep students engaged. Of
course, flying robots have complex hardware, non-trivial
control, and low fault tolerance. These factors can make
UAVs more difficult to work with than ground platforms, but
we took the challenges associated with a flying platform to

∗Denotes equal contribution
1Brown University brand@brown.edu
2Brown University josh roy@brown.edu
3Brown University aaron ray@brown.edu
4Brown University oberlin@cs.brown.edu
5Brown University stefie10@cs.brown.edu

(a) Our autonomous Raspberry Pi Drone.

(b) Students building their
drones.

(c) Class demo day

Fig. 1: The hardware platform and scenes from our class.

be a pedagogical opportunity because they paint an accurate
picture of obstacles faced by real, situated robots.

To create an introductory robotics curriculum that is
accessible, compelling, and realistic, we developed our own
educational robot, the $220 PiDrone, an autonomous drone
based on the Raspberry Pi. All autonomous behavior is im-
plemented onboard in Python using the ROS framework [1].
An onboard camera, infrared distance sensor, and IMU allow
the drone to maintain target velocities and positions.

We also developed an introductory college-level robotics
course with the PiDrone at its core. The course can be
taken directly after a first-year computer science course and
expects only basic knowledge of Python, enabling us to admit
undergraduate students with no previous robotics experience.
To best give students a comprehensive view of robotics and
its role in society, whether or not they continue to work in
the field, we developed the following core competencies:

Hardware and Assembly: Robots are programmable hard-
ware and, accordingly, many problems are due to hard-
ware issues. Our course introduces students to hardware
assembly skills such as soldering, as well as debugging
hardware/software stacks.
Closed Loop Control: Robots must take actions in the
physical world. Our course introduces students to feedback
control with a PID controller in several contexts.
Estimation and Sensor Fusion: Robots must estimate the
state of the world. Students learn to fuse information from
multiple sensors and smooth estimates.
Infrastructure: Robots require multiple processes to coor-
dinate different sensors and actuators. Our course acquaints



students with message passing architectures using ROS [1],
because it is an industry standard. We also emphasize net-
working, development workflow in Linux, and other funda-
mentals.
Safety and Regulatory Concerns: Robots are potentially
dangerous tools. Our course teaches students to use the
PiDrone safely and understand the complex regulatory
framework that surrounds unmanned aerial systems.

In this paper we present the PiDrone and associated
introductory robotics course, as well as an evaluation and
characterization of the PiDrone’s flight and autonomous
capabilities. For a video overview of the course, please see
the video submission and a longer version on YouTube 1.

II. RELATED WORK

The PiDrone and class have some similarities to existing
courses and robotic platforms but fill a gap in available
introductory-level robotics courses and extensible drone plat-
forms for education.

MIT’s Feedback Control Systems [2], offered by Sertac
Karaman, gives each student a Parrot Rolling Spider which
they program and use to develop control systems. Karaman’s
students develop advanced control algorithms using Matlab
and Simulink which run onboard the Rolling Spider using
a custom firmware. Our use of the Raspberry Pi increases
the computational power onboard, enabling us to present
a solution in Python and ROS, increasing accessibility.
Additionally, our course includes an introduction to the
hardware components of the drone, giving students a broad
introduction to robotics.

Another drone-centric course, the Udacity Flying Cars
Nanodegree [3], aims to teach students about advanced
concepts in drone technology. It is an advanced course that
prepares students for work with unmanned aerial systems,
while our course uses drones as an introduction to the whole
field of robotics. Additionally, Udacity’s course focuses on
simulation, with an optional physical extension, whereas a
physical robot is integral to our approach.

MIT’s Duckietown class [4], [5] uses multiple autonomous
Raspberry Pi ground robots to teach concepts in autonomous
driving. This course is more advanced than ours, providing
an opportunity to study multi-robot interactions at a small
scale, but requires significantly more background in robotics.
In addition, it uses a ground robot instead of an aerial robot.

We considered several off-the-shelf drone platforms to use
in the course. Table I demonstrates the differences between
the PiDrone and the other platforms we considered.

The Parrot AR Drone [6] shares many capabilities with the
PiDrone, but it does not officially allow users to program the
onboard computer. Instead, the user sends commands to the
existing software with a phone or computer. For extensible
programming, students need a ROS-enabled base station,
which is a significant burden when teaching a large class.
By using ROS on-board the Raspberry Pi, we allow students
to use any SSH and Javascript capable computer as a base

1https://youtu.be/SoBIIoTgz5M

TABLE I: Low Cost Educational Robotic Platforms

Product C
os

t

O
nb

oa
rd

Py
th

on

R
O

S

O
nb

oa
rd

G
N

U
/L

in
ux

C
om

pu
te

O
pe

n/
E

xt
en

si
bl

e
H

ar
dw

ar
e

Fl
ie

s

Pidrone $220 4 4 4 4 4
Crazyflie $180 8 4 4 4 4
Rolling Spider $40 8 8 8 8 4
Parrot AR drone1 $300 8 4 4 8 4
Duckietown $150 4 4 4 4 8

1 Discontinued

station, without reinstalling their OS. The Parrot AR Drone
is also a discontinued product, so it is not feasible for our
course.

The Crazyflie [7] is a tiny WiFi-enabled drone developed
specifically to support experimentation and modification. The
platform is open-source and well documented and supports
add-on boards that extend its capabilities. The Crazyflie has
been successfully used in a class at UC Berkeley [8]. Though
this aircraft was a contender our course because of it’s
small size and open-source community, the limited compute
power onboard, lack of support for ROS, and prebuilt nature
of aircraft didn’t satisfy all of our goals for the class.
Critically, at the time we were unable to find instances of
the Crazyflie being used with an onboard camera (though an
optical flow add-on sensor has since become available for
the platform [9]).

Picopter [10] has developed a similar platform to ours,
but it is targeted at Makers and drone enthusiasts rather than
an educational robotics setting. It focuses on racing control
with GPS localization rather than autonomy. Additionally,
the Picopter is not currently available for sale, so it does not
provide a feasible platform for our course.

After a survey of available systems, we concluded that our
goals could best be met by developing our own educational
robot. We wanted our drone to be approachable, extensible,
ground up, and powerful — metrics we felt were not en-
tirely satisfied by existing platforms. We think the resulting
PiDrone fills a gap in the existing educational drones.

III. ROBOT ARCHITECTURE

The PiDrone platform is designed to be inexpensive,
robust, extensible, and autonomous. Components for the
platform are readily available online and are sourced almost
entirely from HobbyKing.com. A complete parts list can be
found on our course website [11].

The aircraft is built around a durable, single-piece plastic
frame. It uses 5 inch, 3-bladed props that were found to
be particularly resistant to shattering in crashes. We chose
brushless DC motors with reinforced shafts and bearings
that proved much more resilient than many other motors we
tested. This component adds significantly to the price, and
in the future we plan to test alternatives in order to reduce
the platform cost.



TABLE II: Parts List

Subsystem Item Cost

Computation Raspberry Pi $35
Avionics Skyline32 $15
Avionics 4 Motors $60
Avionics 4 ESCs $40
Sensors IR distance sensor $20
Sensors Pi Camera $15
Power Battery and Charger $30

Hardware Frame and Hardware $5

Total Cost $220

The motors are driven by Afro 12 Amp optoisolated
electronic speed controllers (ESCs) because they proved
reliable in testing, and their power and signal indicator lights
are useful for students when debugging hardware problems
with their drones. The ESCs were reflashed with BLHeli
firmware instead of the default SimonK firmware, as the
new firmware improved the response of the motors to rapidly
changing throttle inputs produced by the PID controller.

Power for the system comes from a three-cell 1500
milliamp-hour lithium polymer battery. Every student was
given three batteries and two chargers. With three batteries,
students can fly almost continuously by charging their bat-
teries in rotation, with a flight time of 7 minutes on one
battery.

The low-level attitude control and the higher-level auton-
omy control run on two separate boards. The Skyline32 Acro,
an off-the-shelf flight controller for racing drones, runs low-
level control; it has an onboard 6-axis IMU and generates
PWM commands which are sent to the ESCs to keep the
drone at the desired attitude and throttle.

Students implement higher-level controllers in Python on
the Raspberry Pi 3, which is connected to the Skyline32
via USB. Although alternatives to the Raspberry Pi like
BeagleBone and Intel Edison offer similar or greater compute
power, the Raspberry Pi is documented extensively online
and has a vibrant open source community. This is important
for ensuring that PiDrone is accessible. We use the Raspberry
Pi 3 because it features onboard WiFi and offers the most
compute power of the Pis — we want students to be able to
implement powerful autonomy and continue to expand the
capabilities of their PiDrone beyond the course.

IV. SOFTWARE ARCHITECTURE

The software stack for the PiDrone, as shown in Figure
2, is split into sensing nodes, control nodes, and nodes for
communicating with the base station. The Cleanflight [12]
firmware that runs on the Skyline32 uses a PID to keep the
drone at a desired attitude. A set of Python ROS nodes on
the Raspberry Pi estimate altitude, position, and velocity, and
generate attitude commands for the Skyline32. The drone is
controlled from the base station via a Javascript interface,
shown in Figure 3, and SSH over the network allows for
editing and running scripts on the Raspberry Pi.

Fig. 2: PiDrone software architecture.

A. Design Decisions

The primary goal for the PiDrone is to be a powerful tool
for teaching the aforementioned core competencies and to
provide a very realistic introduction to robotics for students.
The course was limited to a single college semester, so we
designed projects and obstacles to teach the appropriate con-
cepts in a timely fashion. Due to time and safety constraints,
we restricted the domain over which the drone would be
flown to flat, level surfaces. At the same time, we chose
not to provide maps or structured surfaces. This simplifies
the vision and localization problems while still providing
a realistic and challenging environment in which students
developed autonomous capabilities on the PiDrone.

Methods such as structure from motion are beyond the
scope of this course and would require significant prerequi-
site knowledge to fully understand. By electing to use the
simplifications detailed above, we ensure that any student
with a basic understanding of computer science will be able
to understand and implement the algorithms used in velocity
and position estimation.

The software on the PiDrone is written in entirely in
Python, as the accessibility and teachability of Python out-
weighed performance benefits of a faster language. See the
Robot Performance section for a comparison between Python
and C++ on the drone. By using Python, students are able
to focus more on the concepts and algorithms used in the
software of the drone rather than the programming language
used to implement it.

The software stack of the drone is built around ROS. This
allows for extensibility of the drone, since much pre-written
software is compatible with ROS. Furthermore, it exposes
students to ROS, an industry standard, giving them skills to
develop software for many other robots.



B. Hub

The Hub contains PID controllers and the state machine.
In velocity mode, the Hub accepts velocity estimates and
uses a PID to drive the drone’s estimated velocity to its
target. In position mode, the Hub accepts position estimates
modulates the velocity controller set-point to reach a target
position. A third PID uses the height estimates from the
infrared node to modulate the throttle and drive the drone
to a target altitude. The state machine can be in armed,
disarmed and flying states, and regulates communication with
the Skyline32 depending on the mode. Attitude commands
are sent to the Skyline32 via the MultiWii Serial Protocol
(MSP) interface [13].

C. Low Level Control

Low-level attitude control is handled by the Skyline32
Acro flight controller. The Pi continuously sends desired
angle and thrust commands to the Skyline32; if the Skyline32
stops receiving commands, it enters a failsafe mode and
disarms the drone. This timeout ensures that the drone acts
safely even if the controlling program on the Raspberry
Pi crashes. The Cleanflight firmware running onboard the
Skyline32 can be configured with a free Chrome App —
this was advantageous for the class because students could
use their own laptops to flash and configure the Skyline32.

D. Infrared Node

The infrared sensor node reads data from the IR depth
sensor and publishes the distance to the floor on a ROS
topic. This range data is used by the PID controller for
altitude control, and by the position and velocity nodes for
normalizing by the distance to the scene. The Raspberry Pi
does not have an onboard analog to digital converter (ADC),
so we use an Adafruit ADC to send values to the Pi via I2C.
Voltages are converted to meters and published.

E. Camera Node

The camera node fetches images from the camera and
contains the velocity estimator and the position estimator.
The position estimator only runs when the drone is in
position mode.

1) Velocity Estimation: We implemented a fast, efficient
velocity estimator by exploiting the Raspberry Pi’s GPU
H.264 video encoder [14]. The H.264 encoding pipeline uses
a motion estimation block, which calculates the most likely
motion of 16x16 pixel macro-blocks from frame to frame.
The built-in RaspiVid tools allow the user to access these
motion vectors, which, like optical flow, can be used for
simple visual odometry after scaling by the camera’s distance
from the floor. The H.264 video encoding takes place almost
entirely on the GPU, so these motion vectors can be used
with almost no CPU overhead. As a result, we can estimate
velocity at approximately 80 Hz.

Fig. 3: Screenshot of the Javascript interface showing IMU,
range data, and camera information.

2) Position Estimation: Velocity estimates alone are not
sufficient to allow the drone to stay exactly at a target
position or move a target distance. To achieve this, we
use a separate position estimator node based on OpenCV’s
estimateRigidTransform function, from which an
estimate of the drone’s relative x, y, yaw pose is published.

estimateRigidTransform finds corresponding fea-
tures in two images and returns an affine transform from
the first image to the second. When position-hold mode
is enabled, a video frame is saved to memory. That
first frame and subsequent frames are then passed to
estimateRigidTransform which yields an estimate of
the drone’s position relative to this first frame. The drone is
not always in a position where it can see its first frame,
so each frame is also correlated to the previous to get a
position delta between frames. The sum of these deltas gives
a position estimate for when the drone is unable to see its
first frame. When the drone sees its first frame again after
having not seen it for a time, disagreements between the two
position estimates are smoothed together with an exponential
moving average to avoid jerking.

The affine transformation matrix between frames does not
account for the roll and pitch of the camera out of the image
plane. These degrees of freedom are encapsulated in the
homography matrix between frames, yet we found through
testing that estimateRigidTransform can be run at
a much higher frame-rate on the Pi than the corresponding
homography estimation pipeline, and the benefits of more
frequent updates outweighed those of a more accurate po-
sition estimate. Additionally, the drone does not roll and
pitch significantly when flying at the slow speeds enforced
in the class, making estimateRigidTransform a good
approximation. This decision was explained in class and
used to explain the tradeoffs when using approximations in
modeling physical systems.



Fig. 4: Planar error for our position and velocity controllers
over three different surfaces captured by an external motion
capture system.

F. Offboard Software

Students controlled their drone through a webpage built
with Robot Web Tools [15]. This interface allowed them to
read data from their sensors, arm or disarm the drone, and
issue velocity or position commands (Figure 3). Our browser-
based approach allows students to fly their drones without
needing to download any programs to their base station.
Users interested in extending the drone’s capabilities beyond
the scope of the course can easily interface the drone with
an off-board computer using ROS instead of this browser
interface. The Raspberry Pi can either host its own WiFi
access point or connect to an external network, allowing the
base station to connect to the drone locally.

Students used our lab’s reactive-variables framework to
send high-level sequences of commands to the PiDrone. This
framework allows students to sequence behaviors such as
“take off, fly forward, hover, perform position hold, wait
1 minute, land.” This framework runs off-board on a ROS
capable machine, but in the future we plan to explore running
it onboard the Pi.

V. ROBOT PERFORMANCE

The drone communicates with the Skyline32 at 25 Hz,
allowing our software on the Pi to get IMU orientation
updates and send new attitude commands to the Skyline32
at 25 Hz.

The drone is able to process motion vectors from the
H.264 pipeline and estimate velocity at 80 Hz and position
at 10 Hz with 20% and 50% of the Pi’s total CPU power
respectively. In comparison, an implementation of the same
pipeline in C++ without ROS (courtesy of an ambitious
student, Frederick Rice) is able to estimate velocity at 85 Hz,

Fig. 5: From left to right: Minimal frequency surface,
repeating-texture surface, non-repeating texture surface.

position at 13 Hz using 3% and 70% of the CPU respectively.
We suspect the increased power consumption in position
hold in Rice’s C++ pipeline is due to inefficient handling of
camera frames. The frequency of velocity estimation appears
to be limited by the frame rate of the camera, leading to
minimal performance gain in C++. In position hold, both
implementations make a call to the same OpenCV function,
estimateRigidTransform, and most of the overhead
is in that function resulting in similar loop frequencies. Thus,
we conclude that the performance gained by forgoing ROS
and using C++ instead of Python does not outweigh the
pedagogical benefits of ROS and Python.

The PiDrone shows robust position-hold performance.
Using a motion capture setup for ground truth, we found
that the drone was able to remain within 0.2 meters of the
target position. In practice this level of performance means
the drone can perform position hold over a textured surface
for the entire battery life of the drone.

Figure 4 shows the distance of the the PiDrone from a
starting point while flying over the various surfaces pictured
in Figure 5. The drone is best able to hold its position when
flying over a high-frequency, non-repeating pattern. When in
velocity mode, the drone performed similarly on repeating
and non-repeating textured surfaces, but uniform-color floors
or other surfaces without enough high-frequency features left
the drone without an accurate velocity estimate. The drone
would “slide” along such surfaces, behaving much like a car
on a patch of ice.

In the lab-space where students flew most frequently, we
provided a patterned cardboard pad embellished with high-
frequency hand-drawn designs shown in 5. Multi-colored
carpets also worked relatively well for velocity hold. We
also found that by moving a textured poster under the
aircraft while flying in velocity hold, the PiDrone is able
to athletically “chase” what it sees with its downward facing
camera as it tries to drive its visually-observed velocity to
zero.

During the course, there were rarely more than a few
students attempting to fly their drones in our lab space.
With this limited number of required WiFi connections,
we did not notice any network degradation in most cases.
However, when multiple students published a video feed,



the network would only support a few drones at a time. At
the end of the semester, we attempted to fly all students’
drones at the same time in the same location, as depicted
in Figure 1. In this case, we noticed substantial drops in
network performance that led to unsatisfactory drone latency.
We believe that the network performance loss was a result
of the numerous independent and overlapping WiFi networks
the drones launched. A possible solution to this problem is
having the drones and base stations connect wirelessly to one
router.

VI. CLASS ARCHITECTURE

After developing the PiDrone platform, we developed a
class [16] centered around our core educational goals and
the capabilities of the new system. We wanted students to
gain an in-depth understanding of all systems on their robot
through a series on hands-on projects. We designed these
projects to target specific subsystems of the drone, starting
from the ground up.

Given that the projects were based mostly around building
the drone and its autonomous capabilities, we wanted to
give the students some familiarity with prerequisite systems,
software, and concepts before applying them to the drone.
We created homework assignments to introduce relevant
skills before using them on the projects. For example,
the first three homeworks were on safety, debugging, and
ROS, all important skills that the students required before
programming their drones.

Students assembled their drones as the first project. The
build process involved workshops to introduce technical
skills such as soldering and cable management, as well
as a lecture to explain the hardware systems and basic
vehicle dynamics. Throughout the course we held students
responsible for debugging and maintaining their PiDrones,
so developing hardware literacy and understanding of the
system upfront was crucial for enabling students to work
through hardware issues as they arose. Thorough knowledge
of their drone’s hardware allowed the students to better
implement and debug their software, as they had a better
understanding of the underlying physical systems.

The PiDrone’s spinning propellers and high speed posed
potential safety risks, so it was particularly important to
emphasize safety before any students flew their drone. As
students worked on assembling their drones for their first
project, we spent two weeks discussing safety. We introduced
the FAA rules for unmanned aerial vehicles and studied an
NTSA crash report in depth as a homework. This process
triggered discussions of safety in robotics generally, and the
responsibility of the operator and the engineer to ensure safe
operation.

Subsequent lectures centered on topics that the students
would implement, such as PID controllers, optical flow,
and sensor smoothing, using these concepts to introduce an
overview of the field of robotics. We consistently compared
features of the PiDrone’s hardware and software stacks, to
the technologies developed elsewhere in robotics in order to
show the generalization of the concepts the students learned.

There were also several guest lectures from industry and
academia to give students a broader taste of the field.

For the second project, students implemented a simple
PID in Python to control the altitude of their drone based
on range values from the downward-facing IR sensor. They
validated and tuned their controllers in a simulated envi-
ronment before transitioning to testing on the PiDrone in
a constrained environment — the drones were mounted to a
slider which allowed them only to move up and down. Once
they achieved stable control, students removed their drones
and their altitude controllers on the free-flying drone. This
enabled the students to gain confidence by testing their code
in a safe environment before testing on the robot.

The third project required students to estimate the motion
of the drone using optical flow. This included sensor smooth-
ing and sensor integration, as students had to use IMU data
to correct perceived optical flow for the rotation of the drone.
Students then implemented a two axis PID controller which
enabled the drone to maintain a target velocity in the plane.

To close the loop and enable position control, students
estimated the drones position and wrote controllers to mod-
ulate the set-point of the velocity controller to achieve
a target position in the fourth project. This introduced a
common robotics tool, OpenCV, and demonstrated the power
of layered control systems.

With a closed-loop, position-controlled drone, the fifth
project explored higher level behavior using our lab’s
reactive-variable framework. Students were able to program
their drones to perform semi-autonomous behaviors, such as
hopping from one location to another.

VII. DISCUSSION

The course outcomes validated our choice of drone design,
as 24 of the 25 original students successfully built a drone
and completed all five projects in the class. While there
were several instances of components breaking on students’
drones, none needed to be rebuilt from scratch and identi-
fying the broken hardware gave students the opportunity to
debug the problem and repair their own aircraft.

We also realized that the class must strike a delicate
balance of breadth and depth. On one hand, as we intend
the course to be an introduction to robotics, it is important
to introduce students to a wide view of the skills required to
become a successful roboticist. On the other hand, students
must come away with a deep enough understanding of
individual topics that they will be able to apply them to
real problems. Some students gave feedback that they would
have preferred deeper coverage on some topics. For example,
students used the optical flow implementation provided by
the Raspberry Pi, and we did not cover the algorithm in
depth. More technical depth on specific algorithms like this
did not fit with our vision for the course, but may fit in
similar courses.

Another important piece of student feedback was that
PID tuning assignments became too tedious. Students spent
substantial time tuning their altitude and planar PID controls.
After the experience of tuning the altitude control, the planar



PID tuning often required several more hours of tuning,
yielding significantly less educational value.

VIII. FUTURE WORK

In future iterations of the course, students will still tune
the altitude PID controller as they did in project 2 as tuning
is an important skill when working with robotic systems.
However, for subsequent PID projects we will give them
reasonable parameters that are known to work after they have
implemented their own controllers. This may still require
some fine-tuning, but will save significant time compared to
starting from scratch.

We plan to investigate the addition of an Extended Kalman
Filter (EKF) project to the course. State estimation, partic-
ularly Kalman Filters, are critical to most mobile robots.
Unfortunately, they are significantly more complicated than
many of the other topics in the class, so a balance must be
struck between the accessibility of the course, and extent to
which we ask students to understand an EKF. It is possible
that we could present the students with a completed EKF and
ask them to make use of the state estimate, but we feel that
part of the power of the PiDrone curriculum is that students
build the whole robot from the ground up.

We will implement Simultaneous Localization and Map-
ping (SLAM) on the PiDrone and explore its use in the
course. As with EKF, SLAM is more advanced than the
material we covered in this first iteration of the course, and
the value of adding SLAM as a project will have to be
carefully assessed.

If EKF and SLAM are too complicated to explore in the
context of the class, implementing them on the PiDrone will
increase the capabilities of the platform and enable students
or other users to explore higher level autonomy.

We will continue to experiment with different components
for the PiDrone to bring down the cost. Moving more
functionality into the Raspberry Pi could allow us to remove
the Skyline32 and the IR sensor, further reducing the cost.
We hope that extensive documentation on the course website
and the reduced cost of the drone will make PiDrone useful
to students, researchers and hobbyists outside of our course.

The PiDrone course will run again in Fall 2018 at Brown
University.

IX. CONCLUSION

Although the number of students studying computer sci-
ence is skyrocketing [17], Robotics poses a greater barrier
to entry than many other specializations within computer
science. While accessible introductory robotics courses do
exist, they do not always accurately capture the challenges
faced by real-world robotic systems.

As the role of robots in our society continues to expand,
we wish to increase and improve robotics education. To this
end, we developed a set of core competencies to teach in an
introductory robotics course, and we created the PiDrone,
a compelling and realistic flying robot that would form
the core of this curriculum. After evaluating the course
at Brown University in Fall 2017, we conclude that the

PiDrone is a powerful platform to prepare the next generation
to understand, interact with, and develop the robots that
surround them.

ACKNOWLEDGMENTS

This work is supported by the National Science Foun-
dation under grant numbers IIS-1637614, IIS-1426452, and
IIS-1652561, the National Aeronautics and Space Admin-
istration under grant number NNX16AR61G, and DARPA
under grant numbers W911NF-15-1-0503, W911NF-10-2-
0016, and D15AP00102.

We would like to thank Amazon Robotics for their do-
nation which funded development and equipment for this
course.

We would also like to thank Lena Renshaw, who was a TA
with us, and the students who took our class. In particular,
Frederick Rice provided the C++ code that we compared
with the PiDrone software.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[2] S. Karaman, “Feedback control systems,” accessed: February 14, 2018.
http://dronecontrol.mit.edu/.

[3] Udacity, “Flying car nanodegree program,” accessed: February 14,
2018. www.udacity.com/Flying-Car.

[4] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F.
Chen, C. Choi, J. Dusek, Y. Fang, D. Hoehener, S. Y. Liu, M. Novitzky,
I. F. Okuyama, J. Pazis, G. Rosman, V. Varricchio, H. C. Wang,
D. Yershov, H. Zhao, M. Benjamin, C. Carr, M. Zuber, S. Karaman,
E. Frazzoli, D. D. Vecchio, D. Rus, J. How, J. Leonard, and A. Censi,
“Duckietown: An open, inexpensive and flexible platform for auton-
omy education and research,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 1497–1504.

[5] J. Tani, L. Paull, M. T. Zuber, D. Rus, J. How, J. Leonard, and
A. Censi, “Duckietown: an innovative way to teach autonomy,” in
International Conference EduRobotics 2016. Springer, 2016, pp.
104–121.

[6] Parrot, “Parrot ar drone 2.0,” accessed: February 25, 2018.
https://www.parrot.com/global/drones/parrot-ardrone-20-elite-edition.

[7] Bitcraze, “Crazyflie 2.0,” accessed: February 14, 2018.
https://store.bitcraze.io/products/crazyflie-2-0.

[8] M. Mueller, “Me 136: Introduction to control of un-
manned aerial vehicles,” accessed: February 20, 2018.
http://muellerlab.berkeley.edu/teaching/.

[9] Bitcraze, “Crazyflie 2.0 flow deck,” accessed: March 1, 2018.
https://www.bitcraze.io/2017/07/crazyflie-2-0-flow-deck/.

[10] Pictopter, “Picopter,” accessed: February 16, 2018.
https://www.picopter.org/.

[11] I. Brand, A. Ray, L. Renshaw, J. Roy, and S. Tellex,
“Cs1951r: Parts list,” accessed: March 1, 2018.
http://cs.brown.edu/courses/cs1951r/projects/build/parts.html.

[12] “Cleanflight,” accessed: February 25, 2018. http://cleanflight.com/.
[13] “Multiwii,” accessed: February 20, 2018.

http://www.multiwii.com/wiki/index.php?title=Multiwii Serial Protocol.
[14] L. Upton, “Vectors from course motion estimation,” accessed: Febru-

ary 14, 2018. https://www.raspberrypi.org/blog/vectors-from-coarse-
motion-estimation/.

[15] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski,
M. Wills, and S. Chernova, “Robot web tools: Efficient messaging
for cloud robotics,” in Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on. IEEE, 2015, pp. 4530–4537.

[16] I. Brand, A. Ray, L. Renshaw, J. Roy, and S. Tellex, “Cs1951r,”
accessed: February 20, 2018. http://cs.brown.edu/courses/cs1951r/.

[17] C. R. A. (2017), “Generation cs: Computer science undergradu-
ate enrollments surge since 2006,” accessed: February 28, 2018.
https://cra.org/data/Generation-CS/.


	Introduction
	Related Work
	Robot Architecture
	Software Architecture
	Design Decisions
	Hub
	Low Level Control
	Infrared Node
	Camera Node
	Velocity Estimation
	Position Estimation

	Offboard Software

	Robot Performance
	Class Architecture
	Discussion
	Future Work
	Conclusion
	References

