
Planning with State Abstractions for
Non-Markovian Task Specifications

Yoonseon Oh, Roma Patel, Thao Nguyen, Baichuan Huang, Ellie Pavlick, and Stefanie Tellex

Abstract—Often times, we specify tasks for a robot using tem-
poral language that can also span different levels of abstraction.
The example command “go to the kitchen before going to the
second floor” contains spatial abstraction, given that “floor”
consists of individual rooms that can also be referred to in
isolation (“kitchen”, for example). There is also a temporal
ordering of events, defined by the word “before”. Previous works
have used Linear Temporal Logic (LTL) to interpret temporal
language (such as “before”), and Abstract Markov Decision
Processes (AMDPs) to interpret hierarchical abstractions (such
as “kitchen” and “second floor”), separately. To handle both
types of commands at once, we introduce the Abstract Product
Markov Decision Process (AP-MDP), a novel approach capable of
representing non-Markovian reward functions at different levels
of abstractions. The AP-MDP framework translates LTL into
its corresponding automata, creates a product Markov Decision
Process (MDP) of the LTL specification and the environment
MDP, and decomposes the problem into subproblems to enable
efficient planning with abstractions. AP-MDP performs faster
than a non-hierarchical method of solving LTL problems in over
95% of tasks, and this number only increases as the size of the en-
vironment domain increases. We also present a neural sequence-
to-sequence model trained to translate language commands into
LTL expression, and a new corpus of non-Markovian language
commands spanning different levels of abstraction. We test our
framework with the collected language commands on a drone,
demonstrating that our approach enables a robot to efficiently
solve temporal commands at different levels of abstraction.

I. INTRODUCTION

In an ideal human-robot interaction scenario, humans would
give robots tasks in the form of natural language utterances and
gestures. The variation in language used allows for specifying
tasks at varying levels of spatial abstractions, while specifying
temporal constraints. Meaning can be conveyed with language
at different levels of spatial abstraction, in terms of high-
level goals (such as “fly to the end of the first floor”), lower-
level specifications (such as “fly east, go south, go south and
fly east again”), or mixed-level (such as “go to the yellow
room and the second floor”). Language can also express
explicit constraints on the path taken to reach the goal (for
example, “fly to the red room first, without going through the
green room.”). The former category of commands requires an
agent to fluidly move within an abstraction hierarchy (that
is, knowing that a floor is at a higher level than individual
rooms and directions), while the latter command restricts the
space of possible paths that can be taken and sometimes

The authors are with the Brown University Department of Computer
Science, 115 Waterman Street, Providence, RI 02912. Email: {yoonseon oh,
romapatel, thao nguyen3, baichuan huang, ellie pavlick}@brown.edu, ste-
fie10@cs.brown.edu

Fig. 1. Our environment is a gridworld with three floors, each consisting of
rooms that consist of grid cells. The white arrow shows an example path the
drone can take in the environment. We also include sample natural language
commands (and their LTL formulae) that the drone successfully executed.

induces temporal constraints on the order in which goals can
be visited. It is crucial for robot systems to portray an adequate
understanding of such commands, coupled with the ability to
efficiently execute the underlying task.

Given an environment, a goal condition and constraints,
robots can use planning to reach goal conditions while sat-
isfying constraints. Existing approaches interpret language by
mapping to a reward function in a Markov Decision Process
(MDP) [1]. However, these models very quickly become
intractable as the state space of the world grows larger
[2, 3]. Planning with abstractions in a hierarchical structure
[2, 3, 4, 5], either by using an Abstract Markov Decision
Process (AMDP) [2] or with options [3, 4, 5] can allow
reduction of the state space. There has been previous work
in interpreting natural language task specifications at differ-
ent levels of spatial abstraction and planning using AMDPs
[6]. Separately, as shown in Fig. 1, non-Markovian natural
language commands can be mapped to linear temporal logic
(LTL) formulae [7, 8, 9, 10] to allow efficient planning with
an MDP, given the corresponding LTL task specifications
[11, 12, 13, 14, 15, 16, 17]. Combining the interpretation
of language using a hierarchical structure and the mapping
of commands to LTL expressions is non-trivial, as the non-
Markovian constraints might span different levels of abstrac-
tion. Plans in a more abstract state space could therefore lead
to failure of constraints specified in a less abstract space (that
is, plans at a lower level in the abstraction hierarchy).

In this paper, we introduce the Abstract Product MDP
(AP-MDP) framework to combine the benefits of LTL and

Fig. 2. Complete pipeline for the translation of a natural language instruction
to an LTL formula, then to a Büchi automaton, and to a plan that gives us
action sequences to correctly reach the goal location specified by the task.

AMDP, thus enabling a robot to interpret non-Markovian
commands at different levels of abstraction. There is previous
work in planning for LTL tasks using options [18]. However,
the AMDP approach suits our task better, as its hierarchical
structure closely resembles the hierarchies formed by humans
when planning to solve complex tasks that can be decomposed
into subtasks [2]. In our approach, task specifications are first
given as natural language utterances that are then translated
into LTL expressions by a supervised neural sequence-to-
sequence model. This LTL expression φ is converted into
a finite state representation that accepts infinite inputs, or
a Büchi automaton [19]. This representation allows us to
decompose the problem into sub-problems (organized around
sub-parts of the input LTL expression). Edges of the Büchi
automaton consist of atomic propositions in expression φ and
a sub-problem induces a state transition of the automaton.
To further deal with different levels of abstraction, if atomic
propositions in the same edge are from different levels, we
solve the sub-problem using the lower level AMDP. The robot
must then forgo the computational benefits of the AMDP to
guarantee that the policy satisfies all the constraints present
in the LTL expression. This entire pipeline (shown in Fig. 2)
therefore fluidly allows complex task specifications with non-
Markovian constraints to be specified using natural language
and solved at different levels of the goal hierarchy.

We evaluate our approach by reporting the performance of
AP-MDP in simulation and on a drone platform. We also
present a new corpus of non-Markovian natural language
commands at different levels of abstraction, a neural sequence-
to-sequence model that translates human-uttered natural lan-
guage commands to their corresponding LTL counterparts, and
demonstrates the solving of complex natural language task
specifications using AP-MDP on a drone.

II. RELATED WORK

LTL has been used to model agent behavior in planning
problems with non-Markovian task specifications. Consider a
task that requires an agent to visit regions of interest in a
specific order (for example, “visit the red room first, then
the blue room, and the green room last”). These kinds of
expressions have intrinsic temporal information that must be
taken into account when determining the kind of path that
has to be taken to achieve the goal. LTL allows us to formally

describe these kinds of task specifications as logical functions,
thus allowing robots to then execute these behaviors.

When the goal for a task is defined as an LTL expression,
previous works have often formulated the problem as a product
of an MDP and an automaton of the LTL formula [11, 12,
13, 15, 16]. Some previous works model dynamic systems of
agents as MDPs and developed methods to generate a control
policy that satisfies LTL constraints [11, 12]. The LTL formula
is converted into a Deterministic Rabin Automaton (DRA), and
the dynamic system is formulated as a product of a DRA and
MDP. The goal is then to search for a policy that satisfies
the acceptance condition. Along the same lines, Kasenberg
and Scheutz [14] show that the reverse is also true, that is,
the product of a DRA and an MDP can be considered to
infer an LTL specification from demonstrations. However, this
approach does not scale well for large MDPs.

Decision making with an MDP often becomes intractable
as the size of the state space increases. In order to over-
come intractability, hierarchical frameworks [2, 3, 4, 20] are
commonly used. The options framework [3, 4], for example,
models temporally abstract macro-actions as options that can
be adopted to build abstraction hierarchies. Similarly, AMDPs
[2] can be used for abstraction by decomposing tasks into
series of subtasks, thus allowing planning to take place more
efficiently. However, these methods do not address the problem
of solving LTL specifications with abstractions.

Hierarchical frameworks are powerful when an agent is
faced with the task of planning a sequence of actions for
complex LTL tasks. Several works [21, 22, 23, 24] propose
incorporating both the robot dynamics and the given LTL
constraints in a continuous space. A continuous state space can
be abstracted into a discrete state space and a continuous path
is derived by sampling guided by the high-level discrete plan
[22, 23, 24]. Other works have focused on grounding natural
language to LTL expressions [9, 10, 17] to further allow a
robot to make use of these LTL specifications. Previous work
in hierarchical planning using options can accelerate planning
for LTL tasks [18]. However, the AMDP framework [2] is
better suited for our task than options, by virtue of encoding
a goal hierarchy rather than learning a policy over goals.

To the best of our knowledge, this work is the first to pro-
pose a hierarchical framework for planning for LTL tasks using
the structure of an AMDP. An AMDP provides abstract states,
actions, and transition dynamics in multiple layers above a
base-level MDP, thus decomposing problems into subtasks
with local rewards and local transition functions for policy
generation. Moreover, as shown in our robot demonstrations,
we start from human input given in the form of speech that
is then converted to text. This textual input of the natural
language command is translated to its LTL representation, and
atomic propositions are directly mapped into propositions in
each layer of a multi-level AMDP. We can then plan at levels
higher than the lowest level whenever possible, and find a
policy in a more efficient way than previous approaches.

III. PROBLEM FORMULATION

We consider a planning problem for a robot, when the task
that the robot is required to interpret and solve is given through
a natural language command. Our environment is a 3D grid
world consisting of three floors as shown in Fig. 1. Each floor
is composed of colored rooms, a room is composed of a set
of grid cells, a landmark (such as a charging station) indicates
a cell at position (x,y,z). Landmarks (or cells) are therefore
the lowest level of abstraction, rooms are abstract expressions
of landmarks, and floors are abstract expressions of rooms
and form the highest level of abstraction. A natural language
command (such as “first go to the red room through landmark
1 and then go to the blue room.”) is given to the robot by
virtue of observable visual elements in our abstraction hier-
archy (landmarks, rooms, and floors). This natural language
utterance is grounded to its LTL counterpart (F (landmark 1
∧ F (red room ∧ F (blue room)))) which forms the task
specification. The agent is required to accomplish the task by
correctly finding a path to the correct location and following
the determined path by executing a sequence of actions from
the action set (north, south, east, west, up, down).

We formulate this problem as an MDP that gets a high
reward when the task is accomplished. Crucially, we make
use of abstractions over the MDP state space for more efficient
planning in large environments, and for the robot to efficiently
find policies for commands at different levels of abstraction.
Consider the example task above of “first go to the red room
through landmark 1 and then go to the blue room.” This is
an expression that spans different levels in the abstraction
hierarchy (that is, rooms and landmarks) and can be translated
into its equivalent LTL formula φ over atomic proposition
sets APL for each level L in the hierarchy. For example,
“landmark 1” occupies one grid cell in the environment and
corresponds to an atomic proposition (denoted by α0

0) in
AP 0 and “red room” and “blue room” correspond to atomic
propositions (denoted by α1

0 and α1
1, respectively) in AP 1. The

expression can be translated into φ = F(α0
0 ∧ F(α1

0 ∧ Fα1
1))

using the LTL operator F or “finally”, converted to a Büchi
automaton [7, 19], and then an AMDP [2] to decompose the
problem into a series of smaller, and hence easier to solve,
subproblems. Section IV defines LTL and the variants of
MDPs that our model relies on, while section V goes over
how they are composed together to produce a more efficient
solution, while describing the end-to-end pipeline with the
natural language grounding components.

IV. PRELIMINARIES

This section defines the components used in our formulation
and how they are transformed into one another to form state
abstractions for complex, non-Markovian task specifications
uttered by humans through natural language. We briefly in-
troduce LTL and its syntax, explain the transformation of an
LTL expression to a Büchi automaton and further to an MDP.

A. Linear temporal logic

Temporal logic was first introduced as a formalism for
clarifying issues of time and defining the semantics of tem-
poral expressions. LTL is a temporal logic whose syntax
contains path formulae — the logical expression describes a
specification that can be validated over a trajectory of any
robot (discrete) system. LTL has the following grammatical
syntax: φ ::= π | ¬φ | φ ∧ ϕ | φ ∨ ϕ | Gφ | Fφ | φ Uϕ,
where φ is the task specification or path formula, φ and ϕ
are both LTL formulae, π ∈ Π is an atomic proposition, F
denotes “finally”, G denotes “globally” or “always”, U denotes
“until”, and ¬,∧,∨ denote logical “negation”, “and” and “or”.

B. Linear temporal logic to Büchi automaton

An LTL formula intuitively expresses properties over tra-
jectories or traces (a sequence of sets of atomic propositions)
in the environment. This can be translated into an equivalent
Büchi automaton [19] — a deterministic automaton, that
differs from the general notion of automata in that it accepts
infinite traces represented by the input LTL formula. This
handling of infinite traces is specifically necessary in cases
of complex non-Markovian task specifications that can map
to potentially unbounded action sequences.

Definition 1: (Büchi automaton): A deterministic Büchi au-
tomaton (DBA) is a tuple B = (Q,Σ, δ, q0,F) where Q is a
finite set of states, Σ is the input alphabet, δ : Q × Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F is
the acceptance condition.

For the LTL formula φ, the input alphabet of the automaton
B is Σ = 2AP . A word w over an alphabet can be any infinite
sequence of atomic propositions, and the run of the automaton
on w = a0a1 · · · with ai ∈ Σ is a sequence of states ρ =
q0q1 · · · for qi ∈ Q, where q0 is an initial state and qi+1 =
δ(qi, ai). A word is accepted by the automaton iff its run r
satisfies the relationship lim(r)∩F 6= ∅, that is, the language
L(B) is non-empty if at least one final state is reached.

C. Labeled Markov Decision Processes

In order to combine an MDP with the LTL formula to
make an expanded MDP, we need to annotate each state with
propositions so that we can evaluate the LTL expression. A
labeled MDP [13] is essentially an MDP where transitions are
annotated with labels. These labels are provided by a labeling
function that maps states to valid propositions for each state.

Definition 2: (Labeled MDP): A labeled MDP is a tuple
M = (S,A, T, s0, AP, L,R), where S and A are finite state
and action sets, T : S × A × S → [0, 1] is a transition
probability function, s0 ∈ S is the initial state, AP is a set
of atomic propositions, L : S → 2AP is a labeling function
which maps a state s ∈ S into a set of atomic propositions
valid at state s, and R : S → R is a reward function.

D. Product Markov Decision Processes

We now need to combine the labeled MDP M with the
LTL expression in order to make an expanded MDP which
keeps track of the relevant parts of the LTL state. A product

automaton is one that derives from the product of the finite
transition system of M and the automaton B that represents
the LTL specification. Labeled MDPs have previously been
used for planning over an MDP to satisfy an LTL formula
[15, 16], where the states ofM and B encode the desired LTL
specification. We can therefore design a state based reward
function that relies on acceptance conditions of B.

Definition 3: (Product MDP): Given a deterministic Büchi
automaton B = (Q,Σ, δ, q0,F) and a labeled finite MDP
M = (S,A, T, s0, AP, L,R) , with s ∈ S and q ∈ Q,
the product MDP (P-MDP) for the state (s, q) is given by
Mp = (Sp, A, Tp, s0p, Q, Lp) where:
(a) Sp = S ×Q is a product state,

(b) Tp((s, q), a, (s′, q′)) =

{
T (s, a, s′), if q′ = δ(q, L(s′))
0, otherwise,

(c) s0p = (s0, q) such that q = δ(q0, L(s0)),
(d) Lp((s, q)) = q,

E. Abstract Markov Decision Processes

An Abstract Markov Decision Process [2] (AMDP) hier-
archy decomposes large planning problems into a series of
subproblems with local reward and transition functions using
state and action abstraction.

Definition 4: (Abstract MDP): An AMDP is a 6-tuple M̃ =
(S̃, Ã, T̃ , R̃, Ẽ, F). These are the usual MDP components,
with the addition of F : S → S̃, a state projection function
to map states from the original environment MDP into the
AMDP abstract state space S̃. Actions in the action set Ã
of the AMDP are either primitive actions, or are associated
with subgoals to solve in the environment MDP. The transition
function T̃ captures the dynamics of the effects of changes in
the AMDP state space once subgoals are completed. R̃ is the
reward function. Ẽ ⊂ S̃ is the set of terminal states.

V. TECHNICAL APPROACH

At a high level, we use a neural sequence-to-sequence model
to convert an English command to the corresponding LTL
expression, which is then translated to a Büchi automaton and
then levels of the component AMDP to enable the robot to
infer a policy based on the expression. We run a simulation that
shows the produced action sequence, executable by a drone in
a 3D environment.

A. Abstract Labeled Markov Decision Processes

We propose Abstract Labeled MDPs (AL-MDPs) that de-
composes an MDP M into multiple abstract labeled MDPs
which are based on abstract states, actions, and transitions in
multiple layers. The labeled MDPs in the lowest level, the ith
level, and the highest level are denoted by M̂0, M̂i, and M̂L,
respectively. The abstract labeled MDP M̂i is defined below:

Definition 5: (Abstract Labeled MDP): M̂i =
(Ŝi, Âi, T̂ i, ŝi0, AP,Li, Ri), where Ŝi, Âi, T̂ i and Ri

are a set of states, a set of actions, a transition function,
and a reward function, respectively. States in M̂i correspond
to a combination of atomic propositions in AP by the
labeling functions Li : Ŝi → 2AP . The set of atomic

propositions AP is a union of L disjoint sets AP is, where
AP i = {αi0, · · · , αin} (that is, AP = ∪Li=1AP

i). The
proposition α ∈ AP belongs to AP i, where i is the largest
value which satisfies that there exists a state s ∈ Ŝi which
can determine the truth value of α.

B. Abstract Product Markov Decision Processes

We propose Abstract Product MDPs (AP-MDPs) which
combine AL-MDPs and DBAs to solve ordinary product
MDPs efficiently. We furthermore show how our approach
handles a combination of atomic propositions in multiple
levels. For example, if some of the atomic propositions are
defined at level 0, we cannot guarantee that a plan derived at
level 1 or level 2 will satisfy level 0 constraints. This would
require working at the lowest level of atomic propositions, thus
losing the computational benefit of abstraction and a reduced
state space. In all previous hierarchical approaches in this area,
when atomic propositions of different levels exist together,
the product MDP must be solved at the lowest level (level
0 in this case) to guarantee the satisfaction of the transition
constraint that directly affects it. This therefore does not
afford the computational benefit of planning at higher levels
using AL-MDPs. Our approach, however, employs different
depths of AL-MDPs by decomposing the product MDP into
subproblems to benefit from the hierarchical structure when
the LTL task includes atomic propositions at the lowest level.

AP-MDPs combine the automaton B of the LTL task
specification with AL-MDPs. This involves taking an LTL
formula in the form of an automaton, converting it to a labeled
MDP and decomposing this MDP into several subproblems,
each of which are individually solved at the required level of
abstraction. We use a running example, as shown in section
V-C to highlight the process of how decomposed subproblems
are solved for the task specification in question. Section V-D
then explains how any problem can be decomposed into com-
ponent subproblems and section V-E presents the pseudocode
for the algorithm for this process. The language grounding
component of the system is discussed in V-F and finally, V-G
describes the functioning of the end-to-end system.

C. Example Problem

Consider the example in Fig. 3. This figure shows the DBA
for the LTL task specification φ = F(α0

0 ∧ F(α1
0 ∧ Fα1

1))
and we can see that the atomic proposition α0

0 is in level
0 of the abstraction hierarchy, while α1

0 and α1
1 are in

level 1. To deal with these different levels in the abstraction
hierarchy, we decompose the entire problem into different
subproblems. The first subproblem M̂0 is defined by a tuple
M̂0 = (Ŝ0, Â0, T̂ 0, ŝ00, AP,L0, R0) and here the agent wants
to go to q1 while not visiting other states in the DBA. The
condition to reach the desired state, f(q0, q1, s, s

′) = true is
its goal condition and the condition to stay in the current state,
f(q0, q0, s, s

′) = true is its stay condition, where s and s′ are
the current state and the next state, respectively. The function
f returns true or false depending on whether the logical
expression on the edge is satisfied by the state. The reward

Fig. 3. Deterministic Büchi automaton. Atomic propositions in yellow
circles correspond to those in level 0 and atomic propositions in green circles
correspond to those in level 1. The transitions of the automaton refer to
constraints over the propositions that are satisfied on taking that path.

function ensures that the agent gets a large positive reward if
the goal condition is satisfied and gets a large negative reward
if the stay condition is violated and the goal condition is not
satisfied. In all other cases, it gets a small negative reward
as the time taken increases. Since this subproblem contains
atomic propositions at level 0, we can solve it at level 0, that
is, the lowest level of atomic propositions.

We now consider the latter part of the decomposition, that
is, the second subproblem M̂1. This has atomic proposi-
tions related to level 1, therefore M̂1 can be formulated
at a higher level of abstraction, that is, level 1 (M̂1 =
(Ŝ1, Â1, T̂ 1, ŝ10, AP, L1, R1)), allowing for more efficient
planning over a smaller state space. In this way, all subprob-
lems M̂i can be solved at the desired level to allow for full
use of the benefits of abstraction where possible.

D. Subproblem Decomposition

In general, there are nρ paths in a Büchi automaton from
the initial state to the accepting state. AP-MDPs decompose
the problem into nρ subproblems each denoted by Pρi , which
accomplish the LTL task while following the path ρi.

Each problem Pρi can be decomposed into ni subproblems,
each formulated by an AL-MDP. Each Pjρis aims to change the
DBA state of the agent from q̂ij to q̂ij+1 and the goal condition
and the stay condition of Pjρi are f(q̂ij , q̂

i
j+1, s, s

′) = true and
f(q̂ij , q̂

i
j , s, s

′) = true, respectively. The reward function for
the AL-MDP is defined by:

Rj =

γgoal, if f(q̂ij , q̂

i
j+1, s, s

′) = true,
γstay, else if f(q̂ij , q̂

i
j , s, s

′) = false,
γ, otherwise,

(1)

where γgoal � 1, γstay � 0, and γ is a small negative value.
In this way, AP-MDPs can consist of (

∑nρ
i=1 ni) AL-MDPs.

When we denote the plan for Pρi as (sseq, aseq)
ρi , the plan

for the LTL task is the shortest sequence (sseq, aseq)
∗, where

sseq is the state sequence and aseq the is action sequence.

E. Algorithm

The entire algorithm is presented as pseudocode in Algo-
rithm 1. The input task is specified as an LTL expression
composed of atomic propositions in the environment and the
logical operators defined previously. We translate the LTL

Algorithm 1 Solve AP-MDPs
1: LTL task φ and s0 are given
2: Initialize the optimal plan, (sseq, aseq)

∗.
3: Initialize the length of the optimal plan, l∗.
4: A← LTL2DBA(φ)
5: A.RemoveContradiction()
6: Paths = A.F indPaths()
7: for ρi ∈ Paths do
8: Initialize s0
9: Initialize the plan (sseq, aseq)

ρi

10: for j in {0, · · · , ni − 1} do
11: goal condition ← f(q̂ij , q̂

i
j+1, s, s

′) = true
12: stay condition← f(q̂ij , q̂

i
j , s, s

′) = true
13: `j ← the lowest level of atomic propositions in goal

and stay conditions.
14: M̂j ← (Ŝ`j , Â`j , T̂ `j , ŝ

`j
0 , AP, L`j , R`j).

15: π ← M̂j .Solve()
16: ss, aa← M̂j .P lan(π, s0)
17: (sseq, aseq)

ρi ← (sseq, aseq)
ρi ∪ (ss, aa)

18: s0 ← sseq(end)
19: end for
20: if length(sseq) < l∗ then
21: (sseq, aseq)

∗ ← (sseq, aseq)
ρi

22: end if
23: end for

formula into a DBA using an existing package called Spot2
(line 4) [25]. Note that the DBA may contain infeasible edges
because the translator does not consider the real environment
(for example, if the red room does not exist on the first floor
in a particular gridworld, red_room ∧ floor_1 cannot
be true). We handle this by eliminating edges which have
contradictions consisting of a logical incompatibility between
two or more propositions (line 5), based on specifications of
the environment in question. We check the contradiction by
looking at the truth table of the formula. We then find all
possible paths from the initial state to the accepting state in
line 6. The AL-MDPs goal and stay conditions are defined
through lines 11 to 14, and we then obtain the optimal policy
and plan of AL-MDPs with a solver of the AMDP (lines 15-
16). We then select the best plan which has the minimum
number of actions (lines 20-22).

F. Grounding language to LTL formulae

We train a neural sequence-to-sequence model to translate
natural language commands to LTL expressions. We discuss
our language corpus and the model architecture below.

1) Corpus: We use Amazon Mechanical Turk (AMT) to
collect non-Markovian natural language commands that also
refer to elements in the environment at different levels of
abstraction1. AMT workers were shown images representing
correct and incorrect ways for the robot to complete a task,
and asked to give commands that accurately capture the

1The corpus can be found at https://github.com/h2r/ltl-amdp

https://github.com/h2r/ltl-amdp

Fig. 4. Examples, left and right, tested in simulation. In each example, a natural language instruction is converted to an LTL expression, then to a corresponding
AP-MDP to find a policy. An agent then executes the policy in the specified environment to reach the correct goal state through the desired path.

robot’s correct behavior. 810 natural language commands were
collected from 120 AMT workers for 27 LTL formulae. We
augment these 810 commands to obtain 6185 commands for
343 LTL expressions. Augmentation is done by mapping
one training sample (for example, “go to the red room”
accompanied by F(red room)) to similar commands and
corresponding LTL expressions for every other possible goal
locations. We held aside 20% of the data as the test set to
evaluate model performance and trained on all remaining data
and perform 5 fold cross-validation in this manner.

2) Sequence-to-sequence model: As in Gopalan et al. [17],
we use a neural sequence-to-sequence model composed of
a recurrent neural network (RNN) encoder and decoder to
translate each natural language instruction to an LTL formula.
It is implemented in PyTorch [26] and trained for 10 epochs
over our corpus, with a learning rate of 0.001 using the Adam
optimizer [27]. We used a dropout of 0.8 as a regularizer [28].

G. Planning for an LTL task

Once a natural language command is translated into an LTL
formula, it is then converted into a Büchi automaton with
multiple paths from the initial state to the accepting state. Each
path is represented and solved with an AL-MDP.

VI. EXPERIMENTS

In this section, we show that our method efficiently gen-
erates plans for complex LTL tasks. We evaluate efficiency
with the number of backups and the computation time over
100 tasks. We successfully applied the proposed method on a
drone.

A. Environment Setup

For simulations, we consider two 3D grid worlds (E1 and
E2) of size 6×4×3 and 30×20×6, respectively. The smaller
world E1 has three floors, each comprised of six rooms, each
the size of 2 × 2 grid cells. The larger world E2 has six
floors, each comprised of six rooms of size 10 × 10. The
visually observable elements (grid cells, rooms and floors)
form the atomic propositions of the LTL task specifications.

Importantly, these elements span different levels of abstraction:
landmarks (grid cells) are at level 0, rooms are at level 1, and
floors are at level 2. While our simulation environments consist
of at least three floors, our robot demonstration is performed
in a gridworld with only two floors for compatibility with the
maximum height our PiDrone can reach.

B. Examples in simulation

We consider the tasks below to demonstrate example sim-
ulations of our proposed method. We show the language
command with the corresponding LTL task specification, the
automaton of the LTL expression, and the path found by
our proposed approach for each example. This highlights
how our method solves a given task while satisfying the
constraints of the task. The tasks in question exhibit the com-
plex constraints with non-Markovian nature and varying levels
of abstraction as outlined above. They contain propositions
at different levels in the abstraction hierarchy, and contain
temporal order constraints by specifying certain subtasks that
should be performed before others. The two tasks are:

1) φ1=F ((floor_2 ∨ red_room) ∧ F(floor_1))
(“First either go to the second floor or the red room, and
then go to the first floor”)

2) φ2 = F(floor_2 ∧ F(green_room))
(“Go to the green room after entering the second floor”)

The execution of both tasks is shown in Fig. 4. The process
to solve task φ1 for the given LTL task specification is outlined
in the left side of the figure. Upon decomposing this task
specification as in our proposed method, there are two paths
of automaton states. Consider the path ρ0 = q0q2 corre-
sponding to the AL-MDP M̂0. This has a goal condition of
((red_room ∧ floor_1)∨(floor_2 ∧ floor_1)) and a
stay condition of (¬floor_2 ∧ ¬red_room). For the path
ρ1 = q0q1q2, there are two AL-MDPs M̂0 and M̂1, where
M̂0 has a goal condition of ((red_room ∧ ¬floor_1)∨
(floor_2 ∧ ¬floor_1)) and a stay condition of
(¬floor_2 ∧ ¬red_room), and M̂1 has a goal condition
of (floor_1) and a stay condition of (¬floor_1). Since

(a) (b)

Fig. 5. Cumulative histograms of computing time and the number of backups
of AP-MDP and P-MDP in the environment (a) E1 and (b) E2. We execute
AP-MDP and P-MDP with 100 random LTL tasks in two environments, E1
and E2. The y-axis shows the cumulative number of cases evaluated.

we can satisfy φ1 with only two actions with ρ0, the final
solution is a plan for ρ0.

For task φ2, there exists an infeasible path among paths
in the automaton. The first AL-MDP in ρ0 = q0q2 has goal
and stay conditions of (floor_2 ∧ green_room) and
(¬floor_2), respectively. This problem does not have a
solution because the green room is on the second floor, and
thus our algorithm does not return a plan. There is, however,
a solution for the path ρ1 = q0q1q2. The first AL-MDP has
a goal condition of (floor_2 ∧ ¬green_room) and a
stay condition of (¬floor_2). The second AL-MDP has a
goal condition of (green_room) with a stay condition of
(¬green_room). The planned path is shown in Fig. 4.

C. Efficiency

In this section, we evaluate the efficiency of the proposed
algorithm by measuring the computing time and the num-
ber of backups of the algorithm. The measured computing
time includes pre-processing time like translating the LTL
expression to a DBA and searching for a path in the DBA,
along with the final planning time. The hierarchical structure
allows for more efficient planning when unnecessary backup
across multiple levels of the hierarchy is limited. We also
evaluate the ability of different models to plan without this
unnecessary computation. For each problem, the number of
backups depends on the number and size of subproblems.

Since planning for an LTL task can be formulated as
the product of an automaton B and MDP M as de-
scribed in section IV-D, our baseline algorithm (called P-
MDP) is one that solves the product MDP at level 0 us-
ing value iteration. We ran 100 random tasks in the afore-
mentioned environments (E1 and E2). The example tasks
here are LTL specifications randomly sampled from the set
{Fa, F(a ∧ Fb), F(a ∧ F(b ∧ Fc)), Fa ∧ Fb, ¬a U b} ,
where a, b, and c are atomic propositions that can be visu-
ally observed in our environment (such as landmark_1,
green_room, first_floor). We ensure that atomic
propositions are sampled from all possible landmarks, rooms,
and floors to get a full variety of commands, and ensure
that environment constraints are satisfied. For example, if
level 1 is sampled, we sample the index of rooms among

(a) Computing time ratio (b) The number of backups ratio

Fig. 6. Cumulative histograms of (a) computing time ratio (lower is better)
and (b) the number of backups ratio (lower is better) of AP-MDP to P-MDP.

all possible rooms in that level. The lowest level of sampled
atomic propositions is denoted by 0.

We display the results as histograms plotted in Fig. 5 and
Fig. 6. In Fig. 5, the y-axis denotes the cumulative number
of cases evaluated, while the x-axis denotes the computing
time and the number of backups. We plot results for both
environments E1 (on the left) and E2 (on the right). The red
line shows computing time taken, while the blue line shows
the number of backups, and the dotted line refers to the P-
MDP (our baseline) while the bold line refers to the AP-MDP
(our proposed model). For the corresponding number of cases
on the y-axis, we can see the time taken or the number of
backups, as plotted by the four lines. In both environments E1
and E2, the AP-MDP finds solutions with a shorter computing
time and a smaller number of backups in the majority of cases.
The size of environment E2 is much larger than E1, and it
therefore takes longer computing time and more backups. It
should be noted that AP-MDP perform significantly better than
P-MDP given the benefits of abstraction in large states spaces.

In Fig. 6, to compare the efficiency of the two algorithms
we plot the ratio (that is, AP-MDP to P-MDP) for the same
metrics. For both computing time and number of backups, a
ratio less than 1.0 indicates that AP-MDP is more efficient
than P-MDP. The y-axis shows the cumulative number of
cases, while the x-axis shows the ratio of the computing time
taken. For a corresponding ratio on the x-axis (r = 0.2, for
example) we can see the number of cases that had a ratio
< r). Therefore, a line that solves a larger number of cases
(out of 100) at a smaller ratio is a better solution. The four lines
refer to different environments when solved at different levels.
For example, (E1, l = 1) refers to the smaller environment
at level 1. In E1, AP-MDP is better in 72 among the 100
cases with respect to the computing time and for 71 cases with
respect to the number of backups. In E2, AP-MDP is better
in 86 among 100 cases with respect to the computing time
and for 89 cases with respect to the number of backups. The
AP-MDP decomposes the problem and therefore has to solve
more MDPs than the P-MDP. This means that in certain cases,
especially in the smaller environment where abstraction is
unnecessary, this approach is not faster. However, in the larger
environment, employing abstraction increases the efficiency by
reducing the size of each problem. To clearly show the effect

(a) First floor (b) Second floor

Fig. 7. Figures of the two-floor environment for our drone demonstrations
as viewed through the HoloLens, taken from our video.

of abstraction, we run simulations with atomic propositions in
higher levels (AP 1 and AP 2), to assess how much abstraction
helps when dealing with high-level commands. In E1, the
computing time ratio is less than 1.0 in 95 cases and the
number of backups ratio is less than 1.0 in 99 cases. In
the larger environment E2, the computing time ratio and the
number of backups ratio are less than 1.0 in all cases.

D. Language grounding results

We observe that the accuracy of the model drops on the
held-out LTL commands. This problem of zero-shot gener-
alization (specifically, the ability to generalize to samples
unseen during training) has been widely studied [17, 29, 30]
for neural sequence-to-sequence models that cannot handle
compositionality and the ability of models to learn meaning
representations for given natural language sentences [31].
We also observe cases where changes in word order af-
fect the translated LTL output of the model. Consider the
command “avoid the blue room until you go to landmark
1”, (¬blue room U landmark 1) for example. Variations
in our collected data include sentences like “until you go
to landmark 1, always avoid the blue room” that change
the ordering of referent words (blue room and landmark 1)
which are occasionally confused, and mapped to incorrect
expressions such as (¬landmark 1 U blue room). However,
in the drone demonstrations, the sequence-to-sequence model
correctly translate the given language commands (converted
from speech) into LTL task specifications that are then solved
using our proposed method.

E. Robot Experiments

In addition to the simulations described above, we also
test our proposed method on a drone. The PiDrone [32] is a
quadcopter drone that is equipped with one downward-facing
infrared sensor with a maximum range of 60cm to measure
the drone’s altitude, and one downward-facing camera for
localization over a textured surface. The drone’s flight space
is a 3m× 3m surface. We divide the space into a grid-based
environment, as shown in Fig. 7, consisting of 2 floors, each
with 9 rooms, and each room is a square made up of 4 cells
(each cell is 50cm × 50cm). The action space for the drone
in the grid-based environment is (north, south, east, west, up,
down), where each action changes the drone’s location by 1
cell. We visualize the environment through mixed reality using
a Microsoft HoloLens [33]. Colored rooms and landmarks
(boxes each with the size of 1 cell) to aid path planning

and specify goal positions were set up in a Unity3D virtual
environment running on the HoloLens.

In our demonstration, the drone is given a natural language
instruction through speech. This is converted using Google’s
speech-to-text, and then translated by our trained sequence-to-
sequence model into an LTL formula to be solved by the AP-
MDP framework in real time. The action sequence output by
AP-MDP for the LTL expression is then used for the drone’s
navigation. The natural language commands were: “Navigate
to the red room”, “Avoid landmark two until you have been
to the blue room”, “Move to the orange room then the purple
room”, “Go to landmark three then go to the yellow room”.
Video recordings of the drone demonstrations can be found at
https://youtu.be/zjtMEGUmkd8.

VII. CONCLUSION

This paper introduces a novel approach to combine the
handling of non-Markovian task specifications in large envi-
ronments by grounding complex language to LTL expressions
and then decomposing tasks within an abstraction hierarchy
to plan efficiently at higher levels where possible. We show
that planning with abstractions allows the robot to correctly
reach the goal location more efficiently, in terms of computing
time and backups required, in over 95% of tasks in a small
environment and over 99% of tasks in a larger environment.
We also show that this method of abstraction can handle
LTL task specifications. Moreover, we present the largest
existing dataset of natural language commands mapped to LTL
expressions at different levels of abstraction. We demonstrate
our approach with a PiDrone that navigates to the goal location
along a correct path when given a human-uttered command.

While the language grounding model works fairly well to
translate language to LTL formulae, it cannot fully handle
expressions unseen during training and cannot always deal
with simple changes in word-ordering and variations in the lan-
guage. Future work in this direction can explore compositional
models that can handle a wide range of expressions by learning
to compose subparts together and then execute the required
actions. Future work in the hierarchical setup can explore
models that go beyond fixed hierarchies and state abstractions.
If the AMDP transition hierarchies can be learned with model-
learning methods on the fly, this will enable generalization to
unseen environments and the ability to handle and properly
execute a plan for a wider range of commands.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Nakul Gopalan for his
insightful comments and edits. This work is supported by
the National Science Foundation under grant numbers IIS-
1637614 and IIS-1652561, and the National Aeronautics and
Space Administration under grant number NNX16AR61G.

REFERENCES

[1] J. MacGlashan, M. Babes-Vroman, M. desJardins, M. L.
Littman, S. Muresan, S. Squire, S. Tellex, D. Arumugam,

https://youtu.be/zjtMEGUmkd8

and L. Yang, “Grounding english commands to reward
functions.” in Robotics: Science and Systems, 2015.

[2] N. Gopalan, M. desJardins, M. L. Littman, J. Mac-
Glashan, S. Squire, S. Tellex, J. Winder, and L. L. Wong,
“Planning with abstract markov decision processes,” in
ICAPS, 2017.

[3] G. Konidaris, “Constructing abstraction hierarchies using
a skill-symbol loop,” in Proc. of the International Joint
Conference on Artificial Intelligence, 2016.

[4] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez,
“From skills to symbols: Learning symbolic represen-
tations for abstract high-level planning,” Journal of Arti-
ficial Intelligence Research, vol. 61, pp. 215–289, 2018.

[5] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning,” Artificial intelligence, vol.
112, no. 1-2, pp. 181–211, 1999.

[6] D. Arumugam, S. Karamcheti, N. Gopalan, L. L. Wong,
and S. Tellex, “Accurately and efficiently interpreting
human-robot instructions of varying granularities,” arXiv
preprint arXiv:1704.06616, 2017.

[7] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop:
Experimenting with language, temporal logic and robot
control,” in 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010.

[8] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Trans-
lating structured english to robot controllers,” Advanced
Robotics, vol. 22, no. 12, pp. 1343–1359, 2008.

[9] C. Lignos, V. Raman, C. Finucane, M. Marcus, and
H. Kress-Gazit, “Provably correct reactive control from
natural language,” Autonomous Robots, vol. 38, no. 1,
pp. 89–105, 2015.

[10] A. Boteanu, T. Howard, J. Arkin, and H. Kress-Gazit, “A
model for verifiable grounding and execution of complex
natural language instructions,” in 2016 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2016.

[11] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “MDP
optimal control under temporal logic constraints,” in
Decision and Control and European Control Conference
(CDC-ECC), IEEE Conference on, 2011.

[12] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal
control of markov decision processes with linear tempo-
ral logic constraints,” IEEE Transactions on Automatic
Control, vol. 59, no. 5, pp. 1244–1257, 2014.

[13] J. Fu and U. Topcu, “Probably approximately correct
MDP learning and control with temporal logic con-
straints,” arXiv preprint arXiv:1404.7073, 2014.

[14] D. Kasenberg and M. Scheutz, “Interpretable apprentice-
ship learning with temporal logic specifications,” in IEEE
Conference on Decision and Control, 2017.

[15] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust
control of uncertain markov decision processes with
temporal logic specifications,” in IEEE Conference on
Decision and Control, 2012.

[16] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A.

Seshia, “A learning based approach to control synthesis
of markov decision processes for linear temporal logic
specifications,” in IEEE Conference on Decision and
Control, 2014.

[17] N. Gopalan, D. Arumugam, L. Wong, and S. Tellex,
“Sequence-to-sequence language grounding of non-
markovian task specifications,” in Robotics: Science and
Systems, 2018.

[18] X. Liu and J. Fu, “Compositional planning in markov de-
cision processes: Temporal abstraction meets generalized
logic composition,” arXiv preprint arXiv:1810.02497,
2018.

[19] J. R. Büchi, “On a decision method in restricted second
order arithmetic,” in The Collected Works of J. Richard
Büchi. Springer, 1990, pp. 425–435.

[20] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenen-
baum, “Hierarchical deep reinforcement learning: Inte-
grating temporal abstraction and intrinsic motivation,” in
Advances in Neural Information Processing Systems 29,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016.

[21] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J.
Pappas, “Temporal logic motion planning for dynamic
robots,” Automatica, vol. 45, no. 2, pp. 343 – 352, 2009.

[22] J. McMahon and E. Plaku, “Sampling-based tree search
with discrete abstractions for motion planning with dy-
namics and temporal logic,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 2014.

[23] K. Cho, J. Suh, C. J. Tomlin, and S. Oh, “Cost-aware path
planning under co-safe temporal logic specifications,”
IEEE Robotics and Automation Letters, vol. 2, no. 4,
pp. 2308–2315, 2017.

[24] Y. Oh, K. Cho, Y. Choi, and S. Oh, “Robust multi-layered
sampling-based path planning for temporal logic-based
missions,” in IEEE Conference on Decision and Control,
2017.

[25] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud,
E. Renault, and L. Xu, “Spot 2.0 — a framework for
LTL and ω-automata manipulation,” in Proc. of the
International Symposium on Automated Technology for
Verification and Analysis (ATVA’16), ser. Lecture Notes
in Computer Science. Springer, 2016.

[26] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in pytorch,” 2017.

[27] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[28] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[29] B. M. Lake and M. Baroni, “Still not systematic
after all these years: On the compositional skills
of sequence-to-sequence recurrent networks,” arXiv

preprint arXiv:1711.00350, 2017.
[30] P. Koehn and R. Knowles, “Six challenges for neural

machine translation,” arXiv preprint arXiv:1706.03872,
2017.

[31] I. Dasgupta, D. Guo, A. Stuhlmüller, S. J.
Gershman, and N. D. Goodman, “Evaluating
compositionality in sentence embeddings,” CoRR,
vol. abs/1802.04302, 2018. [Online]. Available:
http://arxiv.org/abs/1802.04302

[32] I. Brand, J. Roy, A. Ray, J. Oberlin, and S. Ober-
lix, “Pidrone: An autonomous educational drone using
raspberry pi and python,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2018.

[33] H. Chen, A. S. Lee, M. Swift, and J. C. Tang, “3d col-
laboration method over hololens and skype end points,”
in Proc. of the 3rd International Workshop on Immersive
Media Experiences, 2015.

http://arxiv.org/abs/1802.04302

	Introduction
	Related Work
	Problem Formulation
	Preliminaries
	Linear temporal logic
	Linear temporal logic to Büchi automaton
	Labeled Markov Decision Processes
	Product Markov Decision Processes
	Abstract Markov Decision Processes

	Technical Approach
	Abstract Labeled Markov Decision Processes
	Abstract Product Markov Decision Processes
	Example Problem
	Subproblem Decomposition
	Algorithm
	Grounding language to LTL formulae
	Corpus
	Sequence-to-sequence model

	Planning for an LTL task

	Experiments
	Environment Setup
	Examples in simulation
	Efficiency
	Language grounding results
	Robot Experiments

	Conclusion
	Acknowledgments

