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Abstract—PiDrone is a quadrotor platform created to ac-
company an introductory robotics course. Students build an
autonomous flying robot from scratch and learn to program
it through assignments and projects. Existing educational
robots do not have significant autonomous capabilities, such
as high-level planning and mapping. We present a hardware
and software framework for an autonomous aerial robot, in
which all software for autonomy can run onboard the drone,
implemented in Python. We present an Unscented Kalman
Filter (UKF) for accurate state estimation. Next, we present an
implementation of Monte Carlo (MC) Localization and Fast-
SLAM for Simultaneous Localization and Mapping (SLAM).
The performance of UKEF, localization, and SLAM is tested
and compared to ground truth, provided by a motion-capture
system. Our evaluation demonstrates that our autonomous
educational framework runs quickly and accurately on a
Raspberry Pi in Python, making it ideal for use in educational
settings.

I. INTRODUCTION

Substantial increase in demand in the field of robotics
demonstrates the need for autonomous educational plat-
forms. The International Data Corporation predicts that
global spending on robotic technologies—and drones in
particular—will grow annually over the next several years
at a compound rate of nearly 20 percent, which is a massive
opportunity for continued innovation in the field [[1]. How-
ever, the plethora of knowledge and technical skills required
for this growing domain is a considerable barrier to entry.
This paper focuses on making advanced autonomy accessible
to individuals with no robotics experience. We build on the
low-cost educational platform introduced in [2] by adding
advanced algorithms for state estimation, localization, and
SLAM. The algorithms are implemented in Python and
documented in novel course projects.

Improvement in drone technology has made many com-
mercial autonomous aircraft widely available. These include
the Tello EDU [3] from DJI which provides high-level APIs
for education and the Skydio R1 [4] which provides an SDK
for developing. These commercial drones primarily target
high-level programming aspects and are not open-source.
There are some open-source drone platforms for advanced
college-level courses; however, these are not suitable for
students with less background in engineering and robotics
[2]. The PiDrone platform and course were created to fill
this gap.
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Fig. 1: PiDrone Hardware Platform

For complex tasks such as mapping, precise position
control, or trajectory following it is necessary to have pre-
cise state estimates of velocity and position. In this paper,
we present an onboard UKF to better estimate state, as
well as localization and SLAM implementations to generate
more accurate position estimates. Mathematical descriptions
of these algorithms provide a formal description of the
state, observation, and control models used to obtain good
performance. Corresponding course material includes these
algorithms and was successfully taught to undergraduate
students at Brown University in 2018 [5] [6] [7].

In Section [[V] we quantitatively evaluate the performance
of the UKF and localization running entirely onboard the
drone’s Raspberry Pi, and FastSLAM running offboard on
a separate base-station computer with ROS installed. Even
though FastSLAM cannot run onboard in an efficient way,
students can still learn and implement the algorithm and
then delegate the computation to another machine to increase
performance. The accuracy of the position estimates obtained
by the UKF, localization, and SLAM compared to ground-
truth measured by a motion-capture system exemplifies the
drone’s ability to serve as an educational platform for these
algorithms. The fact that the algorithms can all be written in
Python increases the accessibility of these algorithms, which
is especially crucial for an introductory robotics course.

II. ARCHITECTURE
A. Hardware

The PiDrone follows a similar parts list to [2] with a
few improvements, making it safer and easier to build while
remaining under $225. Notable hardware changes include
the use of a Raspberry Pi HAT, an add-on board, to improve
the accessibility of the build process and the robustness of
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the built drone [8]]. Soldering directly to the pins of the
Raspberry Pi is a difficult task for introductory students.
Instead, the Raspberry Pi HAT allows students to solder to
pads rather than pins. We also add lightweight, open-source,
3D printed propeller guards to the platform as seen in Fig.
[I] These guards provide additional safety for students and
researchers.

B. Software

To maximize ease of use of the PiDrone as an educational
and research platform, the software architecture is organized
as shown in Fig. The modular architecture provides a
plug-and-play software environment for the drone. The ease
of swapping core software components including control
algorithms, state estimators, sensor interfaces, and user inputs
is demonstrated concretely through the corresponding educa-
tional course. Students implement and substitute in their own
scripts for PID control, SLAM, and UKF state estimation
without compromising the stability of the rest of the system.
This modularity enables researchers to easily implement and
evaluate a new state estimation or control algorithm or add
a new sensor to the drone.

III. STATE ESTIMATION
A. Unscented Kalman Filter

The UKF algorithm and the related Extended Kalman
Filter (EKF) algorithm are the industry standards for state es-
timation of nonlinear systems, used by open-source projects
such as Cleanflight and Betaflight, as well as commercial
products such as the Crazyflie [9] [10] [L1]. The PiDrone
course covers both the mathematics and use cases of the
Kalman Filter, EKF, and UKF, using Probabilistic Robotics
as reference material [[12]; however, student work is centered
on the UKF. By implementing the UKF themselves, students
taking this course will be prepared to understand and work
with state estimation systems either in academia or in indus-
try.

The EKF is widely used for Micro Aerial Vehicles to
estimate state, including acceleration, velocity, and posi-
tion [13]]. It combines data from multiple sensors to form
state estimates, fitting the use case for the PiDrone. The UKF
achieves better estimation performance while remaining no
more computationally intensive than the EKF [14].

The PiDrone software stack implements the UKF due to its
performance benefits. Additionally, unlike the EKF, the UKF

does not require computing derivatives, making the algorithm
more accessible to introductory robotics students.

As the mathematical details of the UKF are quite substan-
tial for an introductory robotics course, we do not require
students to implement many of the computations and instead
make use of the Python library FilterPy, which has an
accompanying online textbook that is presented to students
if they desire deeper understanding of the UKF [15]]. The
project in which students implement the UKF focuses more
on the higher-level design decisions and specifications that
are necessary to adapt the general UKF algorithm to a
particular robotic system such as the PiDrone. Some of these
UKEF design specifications for our drone, such as which state
variables to track and the state transition and measurement
functions, are presented.

The Unscented Kalman Filter implemented on the drone
calculates prior state estimates, computed in the prediction
step, and posterior state estimates, computed in the measure-
ment update step. Due to the computational complexity of
the UKF, two variants were developed to run on the drone:
first, a UKF consisting of a simple one-dimensional model
of the drone’s motion to estimate its position and velocity
along the vertical axis, and second, a model that encompasses
three spatial dimensions of motion. To differentiate between
these two UKFs, we refer to them by the dimension of their
state vectors: the simpler model tracks a two-dimensional
(2D) state vector, while the more complex model estimates
a seven-dimensional (7D) state vector.

1) Two-Dimensional UKF: The 2D UKF has the state
vector x; shown in Equation , which tracks position and
velocity along the z-axis.

xi=[z 2] (1)

To carry out the prediction step of the UKF algorithm, we
use a control input u; = [£], which is the linear acceleration
along the z-axis measured by the Inertial Measurement Unit
(IMU) onboard the drone. It has been shown that in certain
cases the incorporation of IMU data in the measurement
update step may be more accurate [16]; however, for relative
ease of implementation, we have chosen to treat accelerations
as control inputs. This choice is an example of a design
decision that students are made aware of when implementing
the UKF.

The state transition function, with inputs of the previous
state estimate X;_a;, the control input uy, and the time
step At, is shown in Equation (2)) following one-dimensional
kinematics [[17].

1 At Liar)?
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After a prior state estimate is calculated with the state
transition function, the algorithm moves to the measurement
function to incorporate sensor measurements. For the 2D
UKEF, we only consider the drone’s downward-facing infrared
range sensor—which provides a range reading r—in the
measurement update step, so our measurement vector is



given by z; = [r] The measurement function, then, trans-
forms the state vector into measurement space by selecting
the z position component, as shown in Equation () [17] .
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To gain an understanding of the role of the covariance
matrices involved in the UKF algorithm, students collect data
to characterize the sample variance o2 of their infrared range
sensor. The software stack includes simple data simulation
to aid students and researchers as they tune parameters such
as the covariance matrices.

2) Seven-Dimensional UKF: The 7D UKF tracks motion
in three spatial dimensions with the state vector in Equation
(@), as well as the drone’s yaw angle ).
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We define a control input u; = [a'éb i éb]T populated
by linear accelerations from the IMU in the drone’s body
frame. These accelerations are transformed into the global
coordinate frame by taking into account the drone’s estimated
yaw from the state vector, as well as its roll and pitch
angles, which are filtered by the IMU. This transformation is
carried out with quaternion-vector multiplication as shown in
Equation (3)), where q is the quaternion that rotates a vector
from the body to the global frame. The use of quaternions—
which appear frequently in robotics—in the state transition
function offers students an introduction to this mathematical

representation.
w=qu-q 5)
The resulting global-frame accelerations 1y, Ugs, Uzg of
u/ are used in the state transition function in Equation (@)
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where &, 1, £ are components of x;_ ;.

The measurement update step uses the measurement vector
=1 = y & g z/;camera]T, where r is the infrared
slant range reading, x and y are planar position estimates
from the downward-facing camera, Ycymera 1S the camera’s
yaw estimate, and & and y are velocity estimates from the
camera’s optical flow. Equation shows the measurement
function, which uses roll ¢ and pitch 6 angles to transform
altitude into slant range.
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If the planar position estimates originate from localization
or SLAM, which already act as filters on raw camera data,
then it may not be notably beneficial to apply a UKF on top

of these estimates; however, the capability for researchers
to incorporate such measurements exists in the 7D UKF
implementation, and the higher-dimensional state space of-
fers educational insights to students. For the above reason as
well as the computational overhead brought on by estimating
seven state variables, at present, the 2D UKF is preferred
when attempting stable flight. We analyze the performance
of the 2D UKEF in the Robot Performance section.

B. Localization

The UKF provides state estimation via sensor fusion, but
most mobile robots—the PiDrone included—do not include
a sensor to directly measure position [12] [2]. As such, the
PiDrone software stack implements both localization and
SLAM using the particle filter and FastSLAM algorithms
described in Probabilistic Robotics [12]] and the FastSLAM
paper [18].

The implementation of Monte Carlo Localization is
based on the particle filter according to Thrun et al.
[12] with a customized sample motion_model,
measurement _model, and particle update process to
meet our specific hardware setup. We took the idea of
keyframe from Leutenegger et al. [19] to only perform
measurement _model updates when necessary: namely,
when the drone has moved a significant distance. We
use ORB feature detection from OpenCV [20] to provide
the sensor data. We implement a simple version of the
localization algorithm that is easy to understand for students
and fast enough to run onboard the Raspberry Pi.

Our implementation of sample motion.model is a
simplified odometry motion model as shown in Equations (8]
and @) The 0,,0y,d¢ are the translations and rotation, and
the €02,€42,E02,  AC the noise we added which are Gaus-
sian zero-mean error variables with variances o2, 05, O’iaw.
The algorithm keeps track of particle motion, adding noisy
translations and rotations to each particle in every frame.
We tried using a velocity-based motion model where the
velocity is provided by optical flow from the camera [2f;
however, the low-cost camera is influenced by many factors
such as light and its reflection. Instead, we use the transform
between two frames as parameters for the motion model.
With feature detection and matching, we can compute the
translation between two frames. Also, we assume the height
is known which is provided by the infrared sensor. Therefore,
we implemented a 2D localization algorithm.

595 Oy Eo2
oy = [0y + |€02 (8)
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The implementation of measurement _model is feature-
based with known correspondence as described in Chapter 6
of Probabilistic Robotics [12]. The algorithm computes the
global position (x',y’,0") of particles based on features



from the current frame as shown in Equation (I0). The
features variable is the collection of features that are
extracted from the current frame. To narrow down the feature
matching space, the compute_location function takes
features from the current frame to compare with features
that are close to the position of the particle.

In the sample_motion_.model, we add observation
noise to the estimated position before we compute the
likelihood of estimated position and the current position of
the particle. However, the o2 in Equation is the variance
for measurement which is different than Equation (8) which
is for motion. These are empirically tuned values.

Also, we compute the likelihood ¢ of the estimated posi-
tion of each particle in Equation (I2), simply trusting that
most groups of features are unique (the drone flies over
non-repeating textured surfaces [2]), instead of using the
likelihood of landmarks as described in [12]]. This process
simplified the measurement model so that it can provide
position estimation onboard while flying.

x',y’,0' = compute_location(features) (10)
j:/,/ :L,/ 5o-f
g =1v|+ e (11)
0 o’ Eg2
0
q :prob(ag’ —,0,)
-prob(y —y,0y,)
-prob(f’ —0,04) (12)

The update process of the Monte Carlo Localization is
similar to that from Thrun et al. [12], except that we use
a keyframe scheme: the measurement_model is called
only if the sample motion_model has been processed
a certain number of times or the estimated position of the
drone is far from the estimate at the last time we performed
the measurement _model process. This allows the local-
ization algorithm to run in a single thread onboard, which
would be realizable for students with less multi-threading
background.

C. Simultaneous Localization and Mapping

FastSLAM, described in Montemerlo et al. [18], is a
particle filter algorithm for Simultaneous Localization and
Mapping. The dominant approach to this problem has been
to use an EKF to estimate landmark positions. The chief
problem with this approach is computational complexity: the
covariance matrix of an EKF-SLAM with N landmarks has
at least N2 entries. Instead, FastSLAM factors the posterior
distribution by landmarks, representing each landmark pose
with a single EKF. There are some more modern SLAM
algorithms such as ORB-SLAM?2 [21], which may provide
more accurate state estimation in 3D space; however, such
algorithms are more complicated to understand for students.
FastSLAM is simple to understand and a natural fit for the
PiDrone platform as it directly builds off of Monte Carlo
Localization. Particles in MC Localization are augmented

by adding a landmark estimator (EKF) for each observed
landmark to each particle. The motion model, keyframe
scheme, and resampling methods are left unchanged from
localization. The measurement model is replaced with a
map_update method to associate observed features with
existing landmarks and assign a probability to particles,
which each represent an estimate of the robot pose and map.

SLAM seeks to estimate the posterior distribution
p(©,z'|z", u') where © is the map consisting of N landmark
poses © = 6y,..0y, x! is the path of the robot z! =
Z1,..., Ty, 2 is the sequence of measurements 2z = 21, ..., 2,
and u! is the sequence of controls, u* = u1, ..., u;. The main
mathematical insight of FastSLAM is the ability to factor
this distribution by landmark as Equation (13).

p(0, 22" ut) = p(zt|2", u') L, p(0, |2, 2*, ut) (13)

This approach is sound since individual landmark estimations
are conditionally independent, assuming knowledge of the
robot’s path and correspondences between observed features
and landmarks in the map.

The factored posterior is realized with a 2D EKF to
estimate each landmark pose in each particle of the filter.
Newly observed ORB features [20]] are entered as landmarks
into the map, and the EKFs of existing landmarks are updated
when re-observed. The main difference of FastSLAM from
MC Localization, then, is the map_update step, described
in Algorithm [I] which associates newly observed features
with existing landmarks and assigns a weight to each particle.
Note that the landmarks list consists of only landmarks
within a small radius r of the particle’s pose, computed
by line The method get_perceptual_range() uses the
drone’s height to compute the radius of the largest circle
within full view of the drone’s camera. This ensures that
the map represented by each particle is conditioned on the
unique robot path represented by that particle. Also note
that the landmark counter scheme ensures existing landmarks
which are not matched to but lie within the camera’s field
of view are removed in line We determine match quality
using Lowe’s Ratio Test from [22] in line Line [9] finds
the two best-matching landmarks for an observed feature
using OpenCV’s knnMatch [20]. Finally, the weight of
each particle is incremented for each landmark within its
perceptual range. The weight is increased by an importance
factor proportional to the quality of the match for re-observed
landmarks in line and the weight is decreased for new
landmarks in line [I3l The threshold is defined as some
constant between O and 1.

Given the high density of features required for the
motion model, PiDrone SLAM creates landmark-dense
maps, resulting in slow map updates. It was found that
multithreaded map updates are required to perform SLAM
in real time (online SLAM) or else the robot path will get
lost if the drone moves during map updates. Performing
thread-safe updates to SLAM particles is challenging
for introductory robotics students. Rather, we present a
method for performing SLAM sequentially (offline SLAM),
allowing students to implement the simple FastSLAM



Algorithm 1 SLAM - Map Update

1: procedure MAP_UPDATE(observed_features)

2 r + get_perceptual _range()

3 for p € particle_set do

4 landmarks < empty list

5: for Im € p.landmarks do

6 if dist(Im,p.pose) < r then

7 landmarks < landmarks U lm

8 for f € observed_features do

9 matchl, match2 +
best_2_matches(f,landmarks)

10: if matchl.dist > 0.7 - match2.dist then
11: Im « initEK F(p.pose, f.pose)
12: Im.counter < 0
13: p.weight +—

p.weight + log (threshold)
14: else
15: old_Im <« landmarks[matchl_idx])
16: Im « update EK F(

p.pose, f.pose,old_lm)
17: importance x distl — dist2
18: p.weight < p.weight + importance
19: p.landmarks < p.landmarks Ulm
20: Im.matched <+ true
21: for Im € p.landmarks do
22: if Im.matched then
23: Im.counter < Im.counter + 1
24: else
25: Im.counter < Im.counter — 1
26: if Im.counter < 0 then
27: p.landmarks < p.landmarks \ lm

algorithm. We collect flight data on a flying drone, then
perform SLAM offline on the saved data to build a map.
The drone then flies, performing MC localization over the
map created from SLAM,; this runs in real time onboard the
drone. The method shows that maps converge correctly by
localizing over a map created by FastSLAM.

IV. ROBOT PERFORMANCE

The aim of our validation was to assess the performance
of the system relative to ground truth, in order to show
that we are accurately able to perform state estimation.
Fig. 3] depicts the testing environment which includes: the
flying space enclosed in safety netting, the motion capture
cameras, a highly textured planar surface to fly over, the
drone with reflective markers, and the computer used for
offboard computations.

A. Unscented Kalman Filter

The 2D UKF was run onboard the Raspberry Pi with a
predict-update loop executing at 30 Hz to provide the drone
with estimates of its altitude. We compared these filtered esti-
mates to the raw infrared range readings and to the smoothed
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Fig. 4: Height estimates of 2D UKF against other sources.

readings from the Exponential Moving Average (EMA) filter,
which was the filtering method used before the development
of the UKF. However, the latency inherently introduced by
an EMA filter was considered undesirable for a quadrotor.
Fig. @ displays the results of a flight test in which the drone
was commanded to hover in place. The 2D UKF curve
follows the raw infrared readings with less latency than the
EMA in quick ascents and descents. Additionally, the UKF
estimates demonstrate smaller fluctuations than the noisy
infrared sensor. Although the UKF estimates require more
computation than a naive EMA, its benefits are apparent in
Fig. @ and could be particularly useful for agile maneuvers.

The 2D UKF was also tested against ground-truth height
provided by a motion capture system. The results of this
comparison are shown in Fig. f]

B. Localization

We set up the motion capture system to collect the z and y
coordinates of the drone at 120 Hz. The onboard localization
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Fig. 5: Localization algorithm runs in three conditions
Mean Std Maximum  Minimum Mean Std Maximum  Minimum
Onboard Flying  0.115  0.062 0.301 0.007 Offboard Hand-Held  0.127  0.0677 0.265 0.012
Onboard Hand-Held  0.096  0.049 0.261 0.010
Offboard Flying ~ 0.074  0.042 0.190 0.007 TABLE II: Error between our SLAM implementation and

TABLE I: Error between our Localization implementation
and ground truth from motion capture system (meters).

is running at 5 Hz with 40 particles, collecting 180 features
at each frame along with 19,200 map features. The offboard
localization is running at 12 Hz with 50 particles, collecting
250 features at each frame along with 48,000 map features.
We use data from the motion capture system as the ground
truth to validate our localization implementation. The drone
was flying over a 1.67m X 1.65m textured surface, and
we collected data while the drone was flying in a square.
To prepare the map for localization, we took photos of
the surface around 55 centimeters, and stitched them using
Image Composite Editor from Microsoft [23]]. There are
some distortions of the map image which causes offsets for
a certain area, but our localization still works despite these
distortions.

The localization running onboard while the drone is flying
is compared to ground truth in Fig. [5af When running
localization onboard the drone and flying, the Raspberry
Pi spends less of its computational resources on the PID
controller, resulting in less stable flight. This is due primarily
to the computational load of the measurement _model. To
accurately evaluate the quality of the localization algorithm,
we also collected data while moving the drone by hand. The
results are shown in Fig. [5b] We moved the drone slowly and
steadily, and the localization algorithm estimated the position
close to the ground truth. Those two images show that our
simplified localization implementation is functional. Also,
if students want to do further research with the PiDrone,
the offboard version of localization provides higher accuracy
and more stable flight as shown in Fig. allowing other
research code to run simultaneously.

Table [Il shows statistics for data we collected. We com-
pared coordinates from our localization implementation to
the ground truth and we pair them based on the Robot
Operating System (ROS) timestamp. The error for one pair

ground truth from motion capture system (meters).

would be calculated as
error = [z — ' + |y — ¥/,

where x,y are the planar coordinates from the localization
algorithm and z’,%’ are the planar coordinates from the
motion capture system. Considering that the drone is flying
and we did not account for the angle while the frame is
captured, the mean error is acceptable. With more computing
resources and stabler flying, the accuracy is higher.

C. Simultaneous Localization and Mapping

Data are collected from offline SLAM (see Section [I1I-C
for motivation) and compared to ground truth. Initially, the
drone was moved by hand over a 1.67m x 1.65m highly
textured planar surface, extracting 200 ORB features per
frame at a rate of 30 Hz and saving them to a text file, as well
as saving an infrared height reading with every image frame.
Then, SLAM was performed with 40 particles onboard the
grounded drone using the saved flight data, resulting in a map
containing 5,108 landmarks. Finally, the drone was moved
by hand over the same textured surface, performing MC
localization on an offboard machine with 20 particles using
the map created by SLAM. These poses are obtained at a rate
of 14 Hz. We compare the pose data from offline SLAM with
ground-truth obtained by a motion capture system. Table
gives the mean, standard deviation, maximum, and minimum
error. Fig. [6] plots the pose estimate from offline SLAM
compared to ground truth.

V. IMPACT IN EDUCATION

The first run of the PiDrone course by Brand et al.
[2] demonstrated the potential of the platform and course.
Simplified versions of the course have been used to introduce
robotics to dozens of high school students. At the Providence
Career and Technical Academy, the PiDrone has been used
as part of the engineering curriculum for two years. The
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course has been taught at a Summer@Brown session to
high school students from across the nation and world
putting autonomous flight in the hands of students of diverse
backgrounds. The course was also offered at a rural public
school in Upstate New York, again proving the ability of
the course to empower students of all backgrounds with
their own autonomous robots. The PiDrone course for high
school students will be taught again at Summer@Brown
and at MassRobotics, a local robotics incubator in Boston,
Massachusetts [24].

Increasing platform accessibility, the PiDrone platform has
merged with Duckietown under the name of Duckiesky [25].
Duckietown is a popular platform for learning autonomy on
ground robots [25]. This merge resulted in the creation of
an online textbook which makes the platform, learning ma-
terials, and operation instructions readily accessible. These
new online resources were used for the Fall 2018 course at
Brown University. The course proved successful with 23/25
students covering the rigorous content and implementing
their own algorithms for autonomy. The greatest challenge of
the course is introducing a broad array of robotics concepts
within a time frame that only allows students to scratch
the surface. Despite this challenge, upon completion of the
course, students are well-equipped with the tools needed to
approach problems in autonomous robotics.

The future outlook of the platform as an educational
tool includes expansion into additional universities as an
undergraduate course, and the creation of online learning
modules and additional projects for learning and building
upon the drone’s current capabilities.

VI. FUTURE WORK

The PiDrone is still under heavy development. We are
still working on the drone’s stability and safety, as well as
increasing functionality.

We plan to continue expanding the PiDrone platform,
particularly its autonomous capabilities. Huang et al. have
performed research [26] using the PiDrone with Mixed
Reality, natural language commands, and high-level plan-
ning. Adding high-level planning and support for Markov
Decision Processes allows students to learn and work with

reinforcement learning, which can build upon the work
of Huang et al. For hardware updates, we would like to
replace the current IR sensor with a sensor that can more
accurately estimate the drone’s height at higher altitudes.
Further exploration of adding a forward-facing camera to
the drone will enable the implementation of SLAM in three
dimensions.

The addition of a UKF, localization, and SLAM to the
drone demonstrates that the drone can support higher level
autonomy, and opens the door for implementing more ad-
vanced autonomous functionality. Continued work regarding
the drone’s vision capabilities will permit object tracking
and motion planning tasks. Generating a proper dynamics
model of the drone will allow for the implementation of
advanced control algorithms that are better suited than a
PID controller for performing aggressive maneuvers such
as acrobatic flipping or perching. Based on the expanding
capabilities of the platform, new instructional projects will
be created for future iterations of the educational course,
which will run again in Fall 2019 at Brown University.

The course will also be integrated into the edX platform
[27] so that it can be taught both online and in residential
settings. A crowdfunding campaign is planned to enable
packaging of the drone parts into self-contained kits to
distribute to individuals who desire to learn autonomous
robotics using the PiDrone platform. With the modularized
software architecture and existing capabilities of the drone,
students, educators, and researchers alike can easily use and
build upon the PiDrone platform to explore autonomy in
aerial robotics.

VII. CONCLUSION

Current educational robots do not exhibit significant au-
tonomous abilities. Advancing the PiDrone, we present a
low-cost educational drone platform for an introductory
robotics course that teaches advanced algorithms for state
estimation in an accessible way. Although implemented on
a Raspberry Pi in Python, the performance of the UKF,
MC localization, and FastSLAM on the PiDrone makes the
platform a compelling framework for introducing students of
any background to robotics and high-level autonomy.
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