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Abstract—Robust robotic perception and manipulation of
household objects requires the ability to detect, localize and
manipulate a wide variety of objects, which may be mirror
reflective like polished metal, glossy like smooth plastic, or
transparent like glass; for example, picking a metal fork out
of a sink full of running water or screwing a metal nut onto a
bolt. Existing perceptual approaches based on photographs only
take into account the average intensity of light arriving at each
pixel from one direction, which limits their ability to account
for these non-Lambertian scenes. To address this problem, we
demonstrate time-lapse light field photography with an eye-in-
hand camera of a manipulator robot. An eye-in-hand robot
can capture both the intensity of rays, as in a conventional
photograph, as well as the direction of the rays. We present
a formal model for robotic light-field photography that fits into
a probabilistic robotics framework. Using this model, we can
synthesize orthographic photographs, remove specular highlights
from those photographs, and perform 3D reconstruction with a
monocular camera by finding approximate maximum-likelihood
estimates. This information can be used to detect, localize and
manipulate non-Lambertian objects in non-Lambertian scenes:
our approach enables the Baxter robot to pick a shiny metal fork
out of a sink filled with running water 24/25 times, as well as to
localize objects well enough to screw a nut onto a quarter inch
bolt. The techniques in this paper point the way toward new
approaches to robotic perception that leverage a robot’s ability
to move its camera to infer the state of the external world.

I. INTRODUCTION

Many tasks require a robot to detect and manipulate shiny
objects, such as washing silverware in a sink full of running
water, or assisting a surgeon by picking a metal tool from a
metal tray. However existing approaches to object detection
struggle with these non-Lambertian objects [6, 21, 3] because
the shiny reflections create false images and sharp gradients
that change dramatically with camera position, fooling meth-
ods that are based on only a single camera image.

Because it can move its camera, a robot can obtain new
views of the object, increasing robustness and avoiding dif-
ficulties in any single view. To benefit from this technique,
the robot must integrate information across multiple obser-
vations. One approach is to use feature-based methods on
individual images, as in the winning team for the Amazon
Picking Challenge [5], but this approach does not incorporate
information about the viewing angle and can still struggle
with non-Lambertian objects. Other approaches make strong
assumptions, such as that an object is rotationally symmet-
ric [21].

An important area of releated work is multi-view stereo,
which fuses information from multiple calibrated camera im-
ages in order to create a 3D reconstruction of the scene [6].
Multi-view stereo typically uses correspondence of features

(a) Robot preparing to pick a
metal fork in running water.

(b) Wrist camera view of a fork
under flowing water.

(c) Rendered orthographic im-
age of the fork; reflections from
water and metal are reduced.

(d) Discrepancy view, showing
the robot can accurately seg-
ment the fork.

Fig. 1: Our approach allows a robot to detect, localize and
manipulate under challenging non-Lambertian conditions.

across frames as the main cue for 3D reconstruction. Our
approach, in contrast, uses defocus from a very dense set
of images. A fully general approach would combine both
cues and probably lead to higher performance. It is worth
noting that imaging non-Lambertian objects is still considered
an open problem in a recent review paper on multi-view
stereo [6].

In this paper, we demonstrate that light field photogra-
phy [14], or plenoptic photography, is a powerful medium
of inference for robotic perception of non-Lambertian objects
because it incorporates information from the intensity as well
as the angle of the light rays, information which is readily
available from a calibrated camera that can collect multiple
views of a scene. Light fields naturally capture phenomena
such as parallax, specular reflections, and refraction by scene
elements, enabling the robot to perceive and manipulate glass
or metal objects with these properties. We present a probabilis-
tic model and associated algorithms for turning a calibrated
eye-in-hand camera into a time-lapse light field camera that
can be used for robotic perception. The contributions of this
paper are 1) a probabilistic model of light field photography for
a calibrated eye-in-hand camera 2) a framework for calibrating
the camera using light field techniques 3) demonstration of
using a Baxter robot to produce orthographic synthetic pho-



tographs of a scene, extract 3D structure from multiple RGB
wrist camera images, and localize and pick both Lambertian
and non-Lambertian objects. Notably, our approach enables
Baxter to pick a metal fork out of a sink filled with running
water 24/25 times, using its wrist camera. Additionally, Baxter
can use these approaches to place and tighten a nut on a 0.25′′

bolt. Portions of this work previously appeared in a workshop
paper [19].

II. RELATED WORK

Time lapse light field photography has precedent [32, 14],
but the movement is typically constrained to a few dimensions.
Fixed camera [31] and microlens [7, 18] arrays are stable
once calibrated and can capture angular information from
many directions simultaneously, but camera arrays are not
very portable and microlens arrays do not have a very large
baseline. Baxter’s arm allows us to densely collect images
(in sub millimeter proximity to each other) across large scales
(about a meter) over 6 DoF of pose in a 3D volume. The wide
baseline enables us to compute an orthographic projection
of the scene, where every pixel is rendered as if viewed
from directly above. Other datasets using camera gantries
have been released, which enable wider baselines [30], but
not a widely available piece of equipment such as Baxter.
Existing approaches perform depth estimation [29], shape
estimation [27] and other computer vision tasks. However we
are unaware of a robot being used as a light field capture
device for perception and manipulation. Using a 7 DoF arm
as a camera gantry allows the robot to dynamically acquire
more views and integrate information from multiple views in
a probabilistic setting. This approach for object detection and
picking is especially useful for non-Lambertian objects.

Phillips et al. [21] described an approach for detecting
transparent objects that assumes objects are rotationally sym-
metric. Smith et al. [25] used a camera array to perform video
stabilization using light fields but did not provide a framework
for non-Lambertian objects. Rodrigues et al. [23] used a multi-
light system to detect and localize transparent objects; our light
field approach can benefit from controlling lighting, and opens
the door to lighting models for further reducing artifacts and
predicting next best views.

Herbst et al. [8] defines a probabilistic surface-based mea-
surement model for an RGB-D camera and uses it to segment
objects from the environment. A number of approaches use
robots to acquire 3D structure of objects either by moving
the camera or moving the object [12, 1, 9, 28, 24, 10, 16,
15, 11, 1]. Our approach, instead, uses a model based around
light fields, incorporating both intensity and direction of light
rays. This approach can be generalized to IR cameras as well,
augmenting approaches such as KinectFusion [17] to handle
non-Lambertian surfaces and exploiting complementary infor-
mation from the IR and RGB channels. Correll et al. [3]
review entries to the Amazon Robotics Challenge, a variety
of state-of-the-art systems and state that the winning entry
had problems due to the reflective metal shelves [5].

Ray ½

z
1

z
2

(x
1
,y
1
)

(x
2
,y
2
)

p
h

Image

(i,j)Z
h

Fig. 2: Diagram of a scene captured by a camera showing our
variables. For z1, ray ρ ∈ Rl1,w1 ; for z2, ray ρ ∈ Rl2,w2 .

A separate body of work automatically acquires 3D struc-
ture of the environment from RGB or RGB-D cameras. No-
tably, LSD Slam [4] uses a pixel-based approach and achieves
efficiency using key frames and semi-dense depth maps.
Our approach, instead, uses all pixel values from observed
images to render a synthetic photograph, which could then be
processed with gradients or other steps. When pose is already
available, as on Baxter’s wrist camera, our approach enables
efficient use of all information from the camera, integrating
information across many images.

Kutulakos and Seitz [13] presented a theory of space carv-
ing. Both their work and ours use dense ray information from
multiple perspectives and the standard deviation of intersecting
rays to triangulate points in space, but their primary goal
is view consistent 3D reconstruction of Lambertian objects
and ours is 2D synthetic photography that is robust to non-
Lambertian phenomena. It is possible that both works would
ultimately develop into probabilistic ray tracers, and in fact,
our work may benefit from incorporating space carving poten-
tials into the graphical model to model occlusion.

III. PROBABILISTIC MODEL FOR LIGHT FIELDS

We present a probabilistic model for light field photography
using a calibrated eye-in-hand camera. Inference in this model
corresponds to finding a model of the light emitted from a
scene as well as its 3D structure. We show how to use this
model to reduce specular highlights in photographs, as well
as demonstrate its ability to localize objects very accurately.
We assume the robot is observing the scene from multiple
perspectives using a camera, receiving a sequence of images,
Z0 . . . ZH . The robot also receives a pose for each image,
p0 . . . pH , containing camera position and orientation; for
example a robotic arm can obtain this information from its for-
ward kinematics. We assume access to a calibration function
that defines a ray for each pixel in an image: C(i, j, ph, z)→
{(x, y)} which converts pixel i and j coordinates to an x and
y in the robot’s base coordinate system given a z along the ray,
along with its inverse: C−1(x, y, ph, z)→ (i, j). Section III-B
describes this function in detail, including how we estimate its
parameters for the Baxter robot.



(a) Scene. (b) Initial map. (c) Map with objects. (d) Standard deviation of
map with objects.

(e) Discrepancy.

Fig. 3: The mean values of a map m for a scene without objects, and the map after two objects have been added. Blue regions
indicate discrepancy between the two maps. The synthetic photographs were made from 590 images taken in a spiral pattern
around the objects.
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Fig. 4: Bayesian graphical model for our proposed approach.
Dashed lines indicate that those edges are only present for a
subset of the variables, for the bundle of rays Rl,w that corre-
spond to a particular grid cell, defined formally in Equation 4.

The calibration function enables us to define a set of
light rays, R, where each ray contains the direction and
intensity information from each pixel of each calibrated image.
Formally, each ρ ∈ R consists of an intensity value, (r, g, b)1,
as well as the pose of the camera when the image was taken,
ph, and its pixel coordinate, (i, j). This information enables
us to use the ray components to compute an (x, y) coordinate
for any height z. Figure 2 shows a diagram of a scene, where
light ray ρ intersects different planes.

Next, we define a distribution over the light rays emitted
from a scene. Using this generative model, we can infer infor-
mation about the underlying scene, conditioned on observed
light rays, R. We define a synthetic photograph, m, as an
L×W array of cells in a plane in space. Each cell (l, w) ∈ m
has a height z and scatters light at its (x, y, z) location. For
convenience, we write that the calibration function C can
return either (x, y) coordinates in real space or (l, w) indexes
into map cells. We assume each observed light ray arose from

1We use (r, g, b) in our notation because it is more intuitive; our imple-
mentation uses the YCbCr color space.

a particular cell (l, w), so that the parameters associated with
each cell include its height z and a model of the intensity of
light emitted from that cell. In order to model the scene, we
wish to estimate m given observed light rays R. This estimate
can be used to localize objects, extract 3D structure, and
other tasks. Formally, we wish to find a maximum likelihood
estimate for m given the observed light rays R:

argmax
m

P (R|m) (1)

We assume that each bundle of rays is conditionally inde-
pendent given the cell parameters. This assumption is violated
when a cell actively illuminates neighboring cells (e.g., a lit
candle), but enables us to factor the distribution over cells:

P (R|m) =
∏
l,w

P (Rl,w|m) (2)

Here Rl,w ⊂ R denotes the bundle of rays that arose from
map cell (l, w), which can be determined finding all rays that
intersect the cell using the calibration function. Formally:

Rl,w ≡ {ρ ∈ R|C(i, j, ph, z) = (l, w)} (3)

We assume each cell emits light on each channel as a
Gaussian over (r, g, b) with mean µl,w = (µr, µg, µb) and
variance σ2

l,w =
(
σ2
r , σ

2
g , σ

2
b

)
so that:

P (R|m) =
∏
l,w

P (Rl,w|µl,w, σ2
l,w, zl,w). (4)

We rewrite the distribution over the bundle of rays, Rl,w, as
a product over individual rays ρ ∈ Rl,w:

P (Rl,w|µl,w, σ2
l,w, zl,w) =

∏
ρ∈Rl,w

P (ρ|µl,w, σ2
l,w, zl,w). (5)

Next we assume each color channel c in ρ is independent. We
use ρc to denote the intensity value of ρ for channel c.

P (Rl,w|µl,w, σ2
l,w, zl,w) =

∏
ρ∈Rl,w

∏
c∈{r,g,b}

P (ρc|µc, σ2
c , zl,w).

(6)



As a Gaussian:

P (ρc|µc, σ2
c , zl,w) = N (ρc, µc, σ

2
c ). (7)

Figure 4 shows a Baysian graphical model for our approach.
Using this factorization, we can compute the µc and σ2 by
computing the sample mean and variance of the rays that
intersect each cell. We iterate over z using grid search. We
render m as an image by showing the values for µl,w as the
pixel color; however variance information σ2

l,w is also stored.
Figure 3 shows a sample wrist camera image, paired with
synthetic photographs rendered using this model at fixed z
(table height), as well as standard deviation. Edges have higher
standard deviation because these images are focused at table
height, and some rays strike the table, while others strike the
object.

A. Detecting Changes

Once the robot has found an estimate, m for a scene, for
example to create a background model, it might want to detect
changes in the model after observing the scene again and
detecting a ray, ρ′ at (l, w). At each cell, (l, w), we define
a binary random variable dl,w that is false if the light for that
cell arose from background model m, and true if it arose from
some other light emitter. Then for each cell we estimate:

P (dl,w|m, ρ′) = P (dl,w|µl,w, σ2
l,w, ρ

′) (8)

We rewrite using Bayes’ rule, using the joint in the denom-
inator:

=
P (ρ′|dl,w, µl,w, σ2

l,w)× P (dl,w|µl,w, σ2
l,w)∑

dl,w∈{0,1} P (ρ
′|dl,w, µl,w, σ2

l,w)× P (dl,w|µl,w, σ2
l,w)

(9)

We initially tried a Naive Bayes model, where we assume each
color channel is conditionally independent given dl,w:

=

∏
c∈{r,g,b} P (ρ

′
c|dl,w, µc, σ2

c )× P (dl,w|µc, σ2
c )∑

dl,w

∏
c∈{r,g,b} P (ρ

′
c|dl,w, µc, σ2

c )× P (dl,w|µc, σ2
c )

(10)

If dl,w is false, we use P (ρc|dl,w = 0, µc, σ
2
c ) = 1

255 ;
otherwise we use the value from Equation 7. We only use
one ray, which is the mean, µ′l,w of the rays in R′l,w. We
use a uniform prior so that P (dl,w|µc, σ2

c ) = 0.5. However
this model assumes each color channel is independent and
tends to under-estimate the probabilities, as is well-known
with Naive Bayes [2]. In particular, this model tends to ignore
discrepancy in any single channel, instead requiring at least
two channels to be substantially different before triggering.
For a more sensitive test, we use a Noisy Or model. First we
define variables for each channel, dl,w,c, where each variable
is a binary indicator based on the single channel c. We rewrite

our distribution as a marginal over these indicator variables:

P (dl,w|m, ρ′) =∑
dl,w,r

∑
dl,w,g

∑
dl,w,b

P (dl,w|dl,w,r, dl,w,g, dl,w,b)×
P (dl,w,r, dl,w,g, dl,w,b|m, ρ′).

(11)

We use a Noisy Or model [20] for the inner term:

P (dl,w|dl,w,r, dl,w,g, dl,w,b,m, ρ′) = 1−∏
c∈{r,g,b}

[1− P (dl,w|dl,w,c = 1 ∧ dl,w,c′ 6=c = 0,m, ρ′)]
dl,w,c

(12)

We define the inner term as the single channel estimator:

P (dl,w = 1|dl,w,c = 1 ∧ dl,w,c′ 6=c = 0,m, ρ′) ≡ P (dl,w,c|m, ρ′)

(13)

We define it with an analogous version of the model from
Equation 10 with only one channel:

P (ρ′c|dl,w,c, µc, σ2
c )× P (dl,w,c|µc, σ2

c )∑
dl,w∈{0,1} P (ρ

′
c|dl,w, µc, σ2

c )× P (dl,w|µc, σ2
c )

(14)

Figure 3e shows a scene segmented with the noisy Or
model. Note the accurate segmentation of the scene obtained
by the robot’s ability to move objects into the scene and
compare the information using an orthographic projection.
This segmentation allows us to make an appearance model
of an object as viewed from above by using the discrepancy
to segment it from the background. We can use this segmented
model to detect and localize objects. Additionally, depending
on where m is placed in space, we can render different
photographs in different directions. For tabletop manipulation,
we place m above and parallel to the table in order to
obtain an orthographic projection of the camera. This synthetic
photograph corresponds to an image taken by a virtual 35 cm
lens that captures the entire region as viewed from directly
above. In contrast, we can place m vertically to view outward
as shown in Figure 6. We can sweep the focus value, z across
many values in order to focus our virtual camera at different
points in space. (See our video2.)

B. Camera Calibration

In order to accurately focus rays in software, we must be
able to determine the path of a ray of light corresponding
to a pixel in a camera image given the camera pose for that
image, ph, and the pixel coordinate generating that ray, (i, j).
Typical least squares calibration tracks the position of features
across multiple views of a scene, and then uses least squares
to find the camera parameters [26]. We can use synthetic
photography to calibrate the camera by imaging a known
plane and choosing camera parameters to bring the synthetic
photograph into focus.

2https://youtu.be/ZHn2OQ3Yj7I

https://youtu.be/ZHn2OQ3Yj7I


We define a calibration function of the form C(i, j, ph, z)→
{(x, y)}. To perform calibration, we first define a model for
mapping between pixel coordinates and world coordinates.
Then we find maximum likelihood model parameters using
Equation 4.

We use (xp, yp) to denote the pixel coordinate (i =
yp, j = xp), to simplify the notation of the matrix math.
Suppose the image is w pixels wide and h pixels tall so that
a = (xp, yp, 1, 1) is a pixel in the image located at row y and
column x, x can span from 0 to w − 1, and y can span from
0 to h − 1. We specify xp and yp as integer pixels, assign a
constant value of 1 to the z coordinate, and augment with a
fourth dimension so we can apply full affine transformations
with translations. Assume that the principle point cp of the
image is cp = (cpx, cpy) = (w2 ,

h
2 ). That is to say, the aperture

of the camera is modeled as being at the origin of the physical
coordinate frame, facing the positive z half space, collecting
light that travels from that half space towards the negative z
half space, and the z axis intersects cp. In the pinhole model,
only light which passes through the origin is collected, and in
a real camera some finite aperture width is used. We define
a matrix T to correspond to the affine transform from ph
to the coordinate system centered on the camera, and Sz to
correspond to the camera parameters. If we want to determine
points that a ray passes through, we must specify the point
on the ray we are interested in, and we do so by designating
a query plane parallel to the xy-axis by its z coordinate. We
can then define the calibration function as a matrix operation:

TSz


(xp − cpx)
(yp − cpy)

1
1

 =


x
y
1
1

 (15)

To determine the constants that describe pixel width and
height in meters, we obtained the relative pose of the stock
wrist camera from the factory measurements. Here Mx and
My are the camera magnification parameters:

Sz =


Mx · z 0 0 0

0 My · z 0 0
0 0 z 0
0 0 0 1

 , (16)

We model radial distortion in the typical way by making Sz
a function not only of z but also quadratic in (xp − cpx) and
(yp − cpy). We omit the details due to space.

Calibrating the camera involves finding the magnification
terms Mx and My (though the principle points and the radial
quadratic terms can be found by the same means). To find the
magnification coefficients, we set a printed paper calibration
target on a table of known height in front of Baxter. We collect
camera images from a known distance above the table and
estimate the model for the collected rays, forming a synthetic
image of the calibration target. The values for Mx and My

which maximize the likelihood of the observed rays under the
estimated model in Equation 4 are the values which yield the
correct pixel to global transform, which incidentally are also

Fig. 5: A tabletop scene. Top Left: A single image from the
wrist camera, showing perspective. Top Right: Refocused im-
age converged at table height, showing defocus on tall objects.
Bottom Left: Maximum likelihood RGB images, showing all
objects in focus, specular reflection reduction, and perspective
rectification. Bottom Right: Depth estimates for maximum
likelihood images.

the values which form the sharpest synthetic image. We find
Mx and My with grid search. Determining such parameters
by iteratively rendering is a form of bundle adjustment, and
also allows us to perform 3D reconstruction. It is repeatable
and precise, and the cameras are consistent enough that we
can provide a default calibration that works across different
Baxter robots.

IV. EVALUATION

To evaluate our framework, we demonstrate its capabilities
to infer 3D structure, to detect and suppress reflections, and
to pick reflective objects in non-Lambertian scenes.

A. Data Collection Parameters

For all work in this paper, we used the Baxter robot with its
built-in wrist camera. The camera is a 1280×800 RGB sensor
with a fixed focal length of 1.2mm. The pixel size is 3 µm×
3 µm. It is a 1.2mmF/2.4 lens. The depth of field is 9.4 cm to
infinity, with the lens set for optimum focus at 19 cm. (Some of
these figures are available on the Rethink SDK website; others
come from communications with Rethink Robotics.) We set
it to a resolution of 400 × 640. We manually adjusted white
balance and gain to ambient lighting conditions. We turned off
automatic gain control and white balance adjustment because
they introduce variance in the observed intensity values from
different positions.

When collecting data, we move the arm slowly in a plane
at approximately 5.5 cm/s. We turn off all other processing to
collect images and poses at the maximum frame rate, which



leads to end effector pose returns at approximately 100Hz and
images at approximately 25Hz. We use a stream buffer and
linear interpolation to assign a pose to each image based on its
time stamp, and treat this pose as ground truth. The resolution
of the Baxter joint sensors is 0.023 degrees per tick resolution,
with a typical accuracy on the order of ±0.10 degrees and
worst case ±0.25 degrees accuracy when approaching joint
limits [22]. In the worst case, these joint errors lead to up to
5mm of error in the estimated position of the end effector.
However in practice, after the arm has assumed a position and
come to a stop, its position error is less than 1mm. Rethink
Robotics states that their specified repeatability is ±2.5mm
(personal communication).

B. Inferring 3D Structure

To infer 3D structure, we estimate m at each height z using
grid search. For each z, we compute the µc and σ2 as the
sample mean and variance of rays that intersect each cell.
Then we can assign the maximum likelihood height for each
cell as the one that has the minimum variance. Most generally,
each ray should be associated with exactly one cell; however
this model requires a new factorization for each setting of z at
inference time, as rays must be reassociated with cells when
the height changes. In particular, the rays associated with one
cell, Rl,w, might change due to the height of a neighboring
cell, requiring a joint inference over all the heights, z. If a
cell’s neighbor is very tall, it may occlude rays from reaching
it; if its neighbor is short, that occlusion will go away.

As an approximation, instead of labeling each ray with a
cell, we optimize each cell separately, over counting rays and
leading to some issues with occlusions. This approximation
is substantially faster to compute because we can analytically
compute µl,w and σ2

l,w for a particular z as the sample mean
and variance of the rays at each cell. This approximation works
well when there are small variations in distances and little
occlusion because it over counts each cell by approximately
the same amount. We expect it to have more issues when it
estimates scenes with significant variation in depth and occlu-
sion, such as that shown in Figure 6. Under this approximation,
occluded regions will contain more rays that should have been
assigned to other cells, leading to overestimates of the variance
of these cells. In the future we plan to explore EM approaches
to perform ray labeling so that each ray is assigned to a
particular cell at inference time.

Figure 5 shows the depth estimate for a tabletop scene
computed using this method. The images were taken with
the camera 38 cm from the table. The RGB map is composed
from metrically calibrated images that give an orthographic top
down view that appears in focus at every depth. Such a map
greatly facilitates object detection, segmentation, and other
image operations. Note that fine detail such as the letters on the
SPAM is visible, as well as the shape of the top of the mustard
bottle in the depth map. The orthographic projection is useful
for detection and localization because it provides a canonical
view of the object, enabling direct image-matching localization
approaches to be extremely successful. Our approach can not

Fig. 6: A room scene. Top Left: A single image from the
wrist camera. Remaining: Refocused photographs computed
with approximately 4000 wrist images and focused at 0.91,
1.11, 1.86, 3.16, and 3.36 meters.

Fig. 7: Left: An image from Baxter’s wrist camera, which
contains many reflections from the overhead light. Right: an
orthographic photograph of the same scene synthesized from
1000 wrist camera images with reflections suppressed.

only render a top-down orthographic view, but other canonical
views as desired (if data is available from the camera).

C. Detecting and Suppressing Reflections

Overhead lights induce specular highlights and well formed
images on shiny surfaces, as well as broader and more
diffuse pseudo-images on textured or wet surfaces. We can
use information contained in the light field to remove some
of the reflections in an estimated map, as long as affected
portions were seen without reflections from some angles.

Specular reflections of the surface of an object tend to form
virtual images which are in focus behind the object. When a
human looks at a shiny object or the surface of still water, they
might first focus on a specular reflection formed by the object,
realize it is bright and therefore not the true surface, and then
look for a different color while focusing closer. To construct
a synthetic photograph with reduced reflections, we perform a
focus sweep to identify rays that are part of the object, in focus
at one depth, and separately, rays part of a highlight, in focus
at a different (deeper) depth. Specifically, we first estimate z
values for the map by approximate maximum likelihood as
in the previous section. Then, we re-estimate the z values by
re-rendering at all heights while throwing out rays that are too



similar to the first map and only considering heights which are
closer to the observer than the original estimate. That is, the
second estimate looks to form a different image that is closer
to the observer than the first. The final image is formed by
taking either the first or second value for each cell, whichever
has the smallest variance, which is a measure of the average
likelihood of the data considered by that cell. If the second
estimate considered too few samples, we discard it and choose
the first. Figure 7 shows an example image from Baxter’s wrist
camera showing highly reflective objects, and the same scene
with reflections suppressed. This view trades off resolution
but also removes significant artifacts that would vary as the
camera obtained different views.

Identifying reflections using optical cues instead of colors
allows us to remove spots and streaks of multiple light
sources in a previously unencountered scene without destroy-
ing brightly colored Lambertian objects. The requirement
that the second image form closer than the first dramatically
reduces artifacts, but when considering z values over a large
range, some image translocation can occur, causing portions
of tall objects to bleed into shorter ones. When considering
objects of similar height, this algorithm suppresses reflec-
tions substantially without admitting many false positives.
Especially on sharply curved objects there will sometimes be
a region that was covered by a reflection from all angles.
If such a reflection occurs near a boundary it may aid in
localizing the object. If it occurs on the inside of an object
region, it will often be surrounded by a region of suppressed
reflections, which are detected by the algorithm. Concave
reflective regions can form reflections that are impossible to
remove with this algorithm since they form complex distorted
images which can project in front of the object, as in the metal
bowl in our example.

D. Picking Objects

By forming orthographic projections we can use sliding
window detectors to reliably localized Lambertian objects.

1) Picking Accuracy: For each trial, we moved the object
to a random location on the table within approximately 25 cm
of the arm’s starting location. Then we localized the object
using the wrist camera and picked it. We used two different
modes when localizing. For the Point Scan, the wrist camera
used an average of 40 images taken at the arm’s starting
location. We verified that the object was always in view of
the wrist camera when this image was taken, although part of
it may have been occluded by the gripper. In the Line Scan,
we moved the arm 28 cm back and forth over the workspace
to make a synthetic photograph using about 140 images. Next
we estimated the object’s position using image matching in
the synthetic photographs and grasped it. Results appear in
Table 8b.

Notably, the Lambertian green fork was picked every time
with both scans; even the Point Scan was able to successfully
localize the object. However, when using the Point Scan to
localize a similar reflective object, the robot frequently missed
due to different appearances of the object depending on its

(a) Evaluation objects from left to right: glass tumbler,
metal fork, wine glass, safety glasses, green fork, and
glass flask.

Object Point Scan Line Scan

Green Fork 10/10 10/10
Metal Fork 5/10 10/10

Glass Tumbler 7/10 10/10
Wine Glass 3/10 10/10

Safety Glasses 8/10 9/10
Glass Flask 3/10 8/10

(b) Picking performance.

Fig. 8: Evaluation objects and picking performance.

(a) Initial scene. (b) Screwing the nut.

Fig. 9: Our approach allows us to an RGB camera to localize
objects well enough to screw a nut onto a 0.25′′ bolt.

location on the table and reflections from the overhead lights.
However when the robot used our model, performance returns
to 10/10, comparable to the Lambertian object. These results
demonstrate that our approach enables the robot to average
away the reflections by taking into account the light field
information.

Additionally our approach is able to pick many transparent
objects. For our evaluation we focused at the table height
(without doing the z inference), enabling the robot to pick
out the base of the object reliably, leading to more successful
picks.

2) Screwing a Nut on a Bolt: As a test of our system’s
accuracy, we programmed Baxter to screw a nut onto a 0.25′′

bolt. The robot first localized a nut and the bolt on the table.
Next it used an open-loop program to pick up the nut and place
it on the bolt, given these inferred locations. The robot was
able to perform this task several times, showing that the very
precise localization enabled it to robustly and accurate pick up
the nut and place it in the bolt, even though both objects are
very small and the accuracy required is near the limits of the
Baxter robot. Figure 9 shows the scene as the robot completes
the task. See our video attachment 3 for a demonstration.

3https://youtu.be/ZHn2OQ3Yj7I

https://youtu.be/ZHn2OQ3Yj7I


3) Picking from Running Water: To test a highly non-
Lambertian scene, we filled a sink with several inches of
water and used a pump to induce an appreciable current. The
current maintained turbulence across the water surface, which
generated a substantial number of shadows and reflections
in the moving water and surrounding surfaces, shown in
Figure 1a. Next we placed a metal fork in the sink under
the flowing water. We used synthetic photographs focused at
the bottom of the sink to successfully localize and pick the
fork 24 times out of 25 attempts with Baxter’s 4 cm gripper.
There were no 180 degree confusions, and the single miss was
pinched but not lifted. Our video attachment4 shows the robot
performing this task.

The constant presence of reflections and shadows make it
challenging to pick the fork from beneath the water based on
individual images. Bright edges are present at all scales, so
gradient based methods will have trouble, and the average
intensity of the fork is similar to the average intensity of
turbulent water, so blurring the scene will significantly degrade
the signal. A stronger signal of the bottom of the sink may be
obtained by leaving the camera still and averaging incoming
images. This may eliminate reflections and shadows, but it
only provides one perspective of the fork, which is prone to
noise due to fixed reflections; our quantitative results show
that even a metal fork on a table is hard to localize from one
perspective. By synthesizing images which are focused at the
bottom of the sink, we get the benefits of averaging images
from a still camera combined with the robustness of multiple
perspectives. Neither water nor metal is particularly conducive
to imaging with IR depth cameras, making it harder to solve
this problem with such sensors.

E. Discussion

Overall our approach allows a systematic treatment of
reflections and specular artifacts, enabling the robot to do
accurate picking in challenging situations such as a fork in
a sink with running water, as well as pick-and-place precisely
enough to tighten a 0.25′′ nut on a bolt. These results perform
at near the ability of the robot to localize itself. However
limitations remain, due to the time it takes to collect data
and the slow speed of the wrist camera. Additionally a very
accurate calibration is necessary for this approach to produce
reliable results; inaccurate calibration results in blurry images
and lower localization accuracy. In principle, it should be
possible to obtain super-resolution synthetic photographs, for
example by filtering the camera pose and accounting for these
inaccuracies. That said, our calibration system is accurate
enough to be useful for many real-world applications. A
second class of problems arises due to lighting and shadows.
The arm’s own shadow can be detected when creating models
of objects and background, and leads to spurious detections if
not enough data has been collected. Similarly when making
a model of an object, if it is in an environment with strong

4https://youtu.be/ZHn2OQ3Yj7I

shadows, the shadow itself will be part of the model, making
it difficult to detect and localize the object.

V. CONCLUSION

In this paper we have contributed an approach to perception
using light fields which can be implemented on a 7 DoF
robotic arm with an eye in hand 2D RGB camera. We
described the algorithms necessary to calibrate the camera and
demonstrated the use of synthetic photography to extract 3D
structure, remove specular highlights from images, and pick
non-Lambertian objects. To our knowledge, this paper is the
first to describe using Baxter (or any robotic arm) to collect
light field data and render synthetic photographs. Furthermore,
the light field capturing abilities of Baxter in this paradigm are
unique in scale, flexibility, and precision when compared to
other modalities of light field collection.

The detection and matching techniques in this paper rely
on directly matching images, which is made possible by
using synthetic photography to create a standard view such
as an orthographic projection. However many techniques in
computer vision, from SIFT to deep learning to color his-
tograms, can be applied to the synthetic photograph as well
as to individual images. In many cases we expect them to
work better on the synthetic photograph because of noise
reduction, the removal of specular artifacts, and the ability
to orthographically project for a consistent point of view. Our
approach is not a replacement for these techniques but rather
one way to make them more powerful when they have access
to a moving camera.

In the future we plan to explore methods to more in-
telligently collect data and minimize the time needed for
accurate perception. Similarly, depending on the task required
and accuracy needed, the robot can intelligently choose how
much data to gather; for precise manipulation tasks it can aim
for higher precision than for picking up an object, when it
might only need a single frame. A camera array could allow
collection of frames in parallel by allowing the robot to gather
data from multiple viewpoints simultaneously.

Overall our approach represents one way to integrate in-
formation from across multiple camera, allowing the robot
to configure its perceptual approach for the task at hand,
moving low and slow for fine-grained manipulation tasks such
as screwing the nut on the bolt, or taking fewer images from
farther away when less precision is acquired. This approach
represents steps toward a more general probabilistic framework
for computer vision for robotics.
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