Minecraft as an Experimental World for AI in Robotics

Krishna Aluru and Stefanie Tellex and John Oberlin and James MacGlashan
Humans to Robots Laboratory
Brown University
Providence, RI 02912

Abstract

Performing experimental research on robotic plat-
forms involves numerous practical complications, while
studying collaborative interactions and efficiently col-
lecting data from humans benefit from real time re-
sponse. Roboticists can circumvent some complications
by using simulators like Gazebo (Koenig and Howard
2004) to test algorithms and building games like the
Mars Escape game to collect data (Chernova, DePalma,
and Breazeal 2011). Making use of existing resources
for simulation and game creation requires the devel-
opment of assets and algorithms along with the re-
cruitment and training of users. We have created a
Minecraft mod called BurlapCraft which enables the
use of the reinforcement learning and planning library
BURLAP (MacGlashan 2015) to model and solve dif-
ferent tasks within Minecraft. BurlapCraft makes Al-
HRI development easier in three core ways: the un-
derlying Minecraft environment makes the construction
of experiments simple for the developer and so allows
the rapid prototyping of experimental setup; BURLAP
contributes a wide variety of extensible algorithms for
learning and planning, allowing easy iteration and de-
velopment of task models and algorithms; and the fa-
miliarity and ubiquity of Minecraft trivializes the re-
cruitment and training of users. To validate BurlapCraft
as a platform for Al development, we demonstrate the
execution of A* (Hart, Nilsson, and Raphael 1968),
BFS, RMax (Bratman and Tennenholtz 2003), language
understanding, and learning language groundings from
user demonstrations in five Minecraft “dungeons.”

Introduction

Robots can help humans execute simple tasks in controlled
environments for applications such as manufacturing and as-
sistance of the disabled and elderly. Increasing the capability
of robots to handle diverse, complex tasks and environments
requires performing experiments and gathering data to de-
velop and train new algorithms.

Performing experimental research on robotic platforms is
expensive because of the cost of robotic hardware, it con-
sumes lots of time and labor in order to control the envi-
ronment, and involves problems in planning and perception

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A Simulated World in Minecraft

which are difficult and slow to solve due to large state and in-
put spaces. Using a platform where we can model and study
tasks without such hurdles can provide significant time gains
for both developers and users.

Two virtual platforms which have been used to develop Al
for robots are simulators and games. The robotics commu-
nity uses the simulator Gazebo (Koenig and Howard 2004)
to develop algorithms for grasping and movement, among
other tasks. Developing a game from scratch requires signif-
icant overhead. Using a simulator such as Gazebo removes
some of the overhead by providing a realistic world, but re-
quires the developer to provide assets and algorithms. Even
if a convenient game engine such as Unity (Uni 2015) pro-
vides assets and physics, algorithms must be sourced and
user bases established and trained.

To address these limitations, we combined Minecraft, a
game consisting of a rich interactive 3D environment, with
the Brown-UMBC Reinforcement Learning and Planning
(BURLAP) Java code library (MacGlashan 2015), which is
powerful and extensible.

Minecraft is an open-ended game where players gather
resources and build structures by destroying and stacking 3-
D blocks in a virtual world; an example world is shown in
Figure 1. At over a 100 million registered users, it is among
the most popular video games of all time (Makuch 2014).
Minecraft’s state and action space allow users to create com-
plex systems, including logic gates and functional scientific
graphing calculators. It can serve as a platform to model a

wide range of robotics tasks such as cooking assistance, as-
sembling items in a factory, object retrieval and complex ter-
rain traversal.

We created an open source Minecraft mod called
BurlapCraft! to model different tasks within the game.
BurlapCraft uses the Minecraft Forge API, which con-
tains hooks into Minecraft, to shuttle information between
BURLAP and the Minecraft world. BURLAP’s rich state
and domain representation framework, based on the Object-
Oriented Markov Decision Process (OO-MDP) (Diuk, Co-
hen, and Littman 2008) paradigm, can model tasks within
Minecraft, making it possible to transfer object-based
knowledge for planning across environments.

BurlapCraft makes Al development easier in three core
ways: (1) the underlying Minecraft environment makes the
construction of experiments simple for the developer and
so allows the rapid prototyping of experimental setup; (2)
BURLAP contributes a wide variety of extensible algo-
rithms, allowing easy iteration and development of task
models and algorithms; and (3) the familiarity and ubiquity
of Minecraft trivializes the recruitment and training of users.

To validate BurlapCraft as a platform for Al develop-
ment, we solved navigation and block placement tasks in
five dungeons. We also used these dungeons to train lan-
guage groundings that enabled a user to give natural lan-
guage commands that were carried out by the agent.

System Design

An overview of the BurlapCraft system design is shown in
Figure 2. The system begins with the standard Minecraft
game server. The first component of BurlapCraft is a func-
tion that examines the world around the player at any given
time and turns it into an Object-Oriented MDP (OO-MDP)
state representation. This state is passed to an agent that uses
one of BURLAP’s planning or learning algorithms to choose
an action. The selected action is then passed to BurlapCraft’s
action controller for execution in the environment, after
which the process repeats. Reward functions or goals nec-
essary to motivate the agent are typically specified through
some other user-defined channel since there are no intrinsic
rewards or goals in Minecraft. We talk about each piece of
this system in more detail next.

State Representation

For the state representation, we adopt the Object-oriented
MDP (OO-MDP) formalism, which is supported in
BURLAP and aligns well with the needs of Minecraft. An
0OO0O-MDP extends the classic MDP formalism by including
a set of object classes, each defined by a set of attributes,
and a set of propositional functions whose parameters are
typed to object classes. The propositional functions provide
high-level information about the state that can useful for
planning and learning. For example, consider an OO-MDP
that includes room and block objects defined by their posi-
tion in the world. Such an OO-MDP can include a “block-
InRoom” propositional function that operates on block and

ICode and tutorials are available online at:

https://github.com/h2r/burlapcraft

Agent

Planning , Learning 4
/ : &
00-MDP Action
State Controller
Stz /
‘X‘%

Minecraft
Game Server

Figure 2: An overview of the BurlapCraft system design.
At each time step, an OO-MDP state representation of the
current state of the Minecraft server is created; this created
state is passed to an agent employing a BURLAP reinforce-
ment learning or planning algorithm to select actions; the
selected action is actuated by BurlapCraft’s low-level action
controller; then the cycle repeats.

room objects and returns true if the block is within the room.
In Minecraft, we represent states by an agent object (defin-
ing information about the player), block objects (which cor-
respond to interactive blocks in Minecraft), special room
objects (which define contiguous areas in the world), and
inventory objects (objects the agent has in their player in-
ventory). A visual representation of the object classes and
their attributes are shown in Figure 3. This representation
can be trivially extended to encompass more of Minecraft by
adding additional object class definitions (for example, ob-
ject classes for farm animals could be included). The text de-
scription for a simple example OO-MDP state for Minecraft
using this representation is shown in Figure 4.

AGENT BLOCK
Vertical Direction

Rotational Block
Direction Type

Rotational
Direction

g

>

X,Y & Z Coordinates

) ROOM

X,Y & Z Coordinates Max X

Selected Item
Type

INVENTORY BLOCK
Min

:

Max| Room
Z | Color

—_
Block Type
&
Block Name

Min X

Figure 3: Object Classes and their respective Attributes. The
rotational direction for south, west, north, and east corre-
sponds to the numbers zero to three, respectively.

roomorange {room)

roomXMax : 19
roomXMin: 6
roomZMax : 4
roomZMin:]
roomColor: orange

block® (block)

x: 4

yi 1

z: 1

blockType: 178
inventoryBlock® (inventoryBlock)

blockType: 165

blockNames : blockl

agent® (agent)

x: 1
e 1
z: 3
rotationalDirection: @
verticalDirection: ‘]

selectedItemID: 278

Figure 4: An example state from a Minecraft dungeon

Agent Control

When the Minecraft game is parsed into an OO-MDP
state, it is passed to an agent that must decide how to act.
BurlapCraft currently has 8 possible actions that can be se-
lected by the agent and then passed to a low-level action con-
troller that actuates the action in the Minecraft game server.
The list of all currently supported actions and their effects
are listed in Table 1. The actions are implemented by over-
riding mouse and keyboard inputs for a fixed period of time
or by calling Minecraft Forge’s API methods. For example -
for the “Move Forward” action, we override keyboard input
by simulating a click on the “w” key for 1.5 seconds whereas
for the “Change Item” action, we call an inbuilt method to
set the agent’s current item to the next item in the agent’s in-
ventory. This makes its possible to define other actions like
crafting or smelting, which we plan to implement in the fu-
ture.

Agents implementing learning algorithms will either learn
their own model of the world and choose actions accordingly
(as in model-based reinforcement learning), or directly learn
the utilities of the actions to determine action selection (as
in model-free reinforcement learning). To facilitate planning
algorithms, BurlapCraft includes a model of Minecraft’s dy-
namics for all included actions. This model allows a plan-
ning algorithm to take as input the initial state of the prob-
lem, generate a policy for it, and the follow the computed
policy in a closed loop fashion until task termination. Given
the state representation and (in the case of planning) the
model, any of BURLAP’s included reinforcement learning
or planning algorithms can be used to control the agent in
Minecraft.

Learning from Demonstration

Another area of active research is learning from demonstra-
tion (LfD) (Argall et al. 2009), in which a human provides
example demonstrations of a behavior from which an agent
learns. Minecraft is an especially appealing space to perform
this kind of research since it includes a large user base that

Action Effect

Move Forward Agent’s X +/- 1 or agent’s Z +/- 1 based on
the agent’s rotational direction.

Rotate Left Agent’s rotational direction cycles back-
wards from 3 to 0.

Rotate Right Agent’s rotational direction cycles for-
wards from 0 to 3.

Look Down Agent’s vertical direction is set to 1.

Look Ahead Agent’s vertical direction is set to 0.

Change Item Agent’s selected item type changes to the

type of the item in the next slot. It is set to

-1 if there is no item in the next slot.
Destroy Block The instance of the block is removed from
the state and a new inventory block in-
stance is added to it.
The instance of the inventory block is re-
moved from the state and a new block in-
stance is added to it.

Place Block

Table 1: Possible actions and their effects.

is familiar with playing the game. Therefore, BurlapCraft in-
cludes a demonstration extractor in which the human plays
the game with standard keyboard and mouse input and an
OO-MDP state and action sequence usable by LfD algo-
rithms is produced. The demonstration extractor operates by
frequently polling the state parser every 100ms. If the state
is a duplicate of the most recently observed state, then it is
discarded from the demonstration sequence. Because the ac-
tion inputs the human uses (keyboard and mouse) are differ-
ent than the MDP action set used by the BurlapCraft agent,
the actions applied between the observed states are inferred
by finding the action in the BurlapCraft action set that would
lead to the observed state transition.

Case Studies

In this section we explore multiple learning and planning
applications within Minecraft and highlight how Minecraft
presents a challenging environment that motivates future re-
search. For each of these case studies we created small “dun-
geons” in which to test the algorithm. We used five different
test dungeons which we will describe in the relevant section
where they were used: grid, bridge, easy maze, tough maze,
and four rooms.

Planning

For applying planning algorithms in Minecraft we used
BURLAP’s implementation of breadth-first search (BFS)
and A* to solve the bridge dungeon, easy maze, and tough
maze. In the case of A*, we also provided a Manhattan dis-
tance heuristic to the goal gold block.

The bridge dungeon (Figure 5) is an enclosed area with di-
mensions 10x10x5 and it contains a mineable block, a gold
block and lava separating the two halves of the dungeon. The
goal in this dungeon is to reach the gold block, but to do so,
the agent will need to mine the block and place in the lava

so that it can cross unharmed to the gold block. We use this
dungeon as a simple example of a reach goal location prob-
lem that requires more complex mining and building behav-
ior.

Figure 5: 7x7 Bridge Dungeon. Actions used by the agent
to solve the dungeon include ‘Rotate Left’, ‘Rotate Right’,
‘Move Forward’, ‘Place Block’, ‘Change Item’, ‘Look
Down’ and ‘Destroy Block.

The two maze dungeons: easy maze (Figure 6) and tough
maze (Figure 7) are identical 14x14x4 mazes with the goal
of reaching a target gold block from the furthest point away
from it. However, the tough maze also includes 6 blocks that
need to be destroyed to reach the goal gold block’s location.

For the bridge dungeon and the easy maze, both BFS and
A* were able to solve the problem in less than 1ms (execut-
ing the plan takes longer since the BurlapCraft’s action con-
troller takes 1.5 seconds per action). However, attempting
to solve the tough maze resulted in both A* and BFS run-
ning out of memory before solving the problem. Although
the differences between the easy and hard maze seem triv-
ial, the ability for the agent to destroy and replace the blocks
anywhere else in the maze greatly increases the size of the
state space resulting in a difficult planning problem. Specif-
ically, since the maze has 90 traversable cells, including 6
replaceable blocks multiplies the size of the state space by
(%) = 622,614,630 ~ 10° states. Tackling a more full ver-
sion of Minecraft with even more blocks that can be mined
and placed will present even greater challenges and we be-
lieve will help motivate the development of better planning
algorithms that can handle these kinds of complex spaces.

Learning

We next use BURLAP’s RMax (Brafman and Tennenholtz
2003) implementation as a demonstration of using a re-
inforcement learning (RL) algorithm within BurlapCraft.
RMax is a model-based RL algorithm that uses an “op-
timism in the face of uncertainty” heuristic to guide ex-
ploration until it has a confident model of how the world
works. We applied RMax with a tabular learning model in
a small 5x5x3 grid dungeon shown in Figure 8. It takes 3
to 4 episodes of RMax within the grid dungeon to learn
the transition dynamics and generate an optimal plan on all

Figure 6: 14x14 Easy Maze. Actions used by the agent to
solve the dungeon include ‘Rotate Left’, ‘Rotate Right’ and
‘Move Forward.’

Figure 7: 14x14 Tough Maze. Actions used by the agent
to solve the dungeon include ‘Rotate Left’, ‘Rotate Right’,
‘Move Forward’, ‘Destroy Block’ and ‘Look Down’.

consecutive runs, which took a total of 197 seconds with a
1.5 second execution time for actions. In larger dungeons
with more blocks, this learning time would rapidly grow.
RMax is typically accelerated by including compact model
representations that can be quickly learned with little data.
For example, SLF-RMax (Strehl, Diuk, and Littman 2007)
is capable of accelerating learning by learning a dynamic
Bayesian network to model the environment dynamics, but
since Minecraft has an extremely large number of state vari-
ables that increase with the number of blocks and block
types, it will not be able to scale well. Deterministic Object-
oriented RMax (Diuk, Cohen, and Littman 2008) factors the
model dynamics along the objects in an OO-MDP and can
generalize well, but can not handle any uncertainty and is not
capable of handling all of the possible complex transitions
in Minecraft with providing a large amount of background
knowledge. We believe these challenges will motivate the
development of additional RL algorithms.

Figure 8: 5x5 Grid Dungeon

Learning Language Groundings

An intuitive way for people to convey tasks that they want a
robot to complete is to communicate the task through natural
language. Minecraft players who use specialized bots to per-
form monotonous tasks, such as Minebot (Min 2014), may
also benefit from being able to communicate the task they
what carried through natural language. In this case study, we
apply the methods described in MacGlashan et al. (2015)
to learn natural language groundings from demonstrations
which allows a user to iteratively train a language model that
can be executed by the agent.

The goal of this language grounding work is to interpret
natural language commands as high-level task reward func-
tions that indicate a goal for the agent to complete. After
interpreting the command as a reward function, a planning
algorithm can be used to determine the appropriate behavior
that solves the task. Grounding to reward functions allows
tasks to be communicated in a variety of environments with-
out requiring step-by-step solution information to be con-
veyed by the human user. To train the model, a user sup-
plies example commands paired with demonstrations (state-
action sequences) that carry out the example command.
From the demonstrations, the agent infers a latent reward
function that motivated the behavior. The reward function
representation uses OO-MDP propositional functions to pro-
vide a logical structure that allows language to ground to it
using the IBM Model 2 language model (Brown et al. 1990;
1993). Minecraft is a particularly appealing environment to
test this kind of work because it has a very large user base
that can be queried to provide expert demonstrations and
commands for a variety of tasks.

In our first application of language grounding in
BurlapCraft, we took the Amazon Mechanical Turk dataset
used by MacGlashan et al., trained the language model on
it, and built Minecraft environments and propositional func-
tions that allowed the commands from that dataset to be in-
terpreted and executed in Minecraft. In this dataset, users
provided commands (that were paired with demonstrations)
for taking toy objects like stars to different colored rooms or
for navigating to different rooms. An example environment
that we constructed is shown in Figure 9. Using this recon-

struction of the dataset environments, we were able to have
a user playing Minecraft enter a command taken from the
dataset through the Minecraft command prompt and have it
successfully interpreted and executed by the agent. A video
demonstrating one of the commands being entered, inter-
preted, and executed has been made available online.?

Figure 9: 12x12 Four Rooms Dungeon

We then extended this dataset transfer application to allow
more Minecraft specific language and tasks to be learned and
demonstrated in an online fashion. First, we added propo-
sitional functions used to describe tasks to include prop-
erties about Minecraft blocks and whether the agent was
standing on blocks. Next, we set up a framework where
the user can issue the ‘learn’ command in Minecraft’s com-
mand prompt followed by the language command that they
wish to demonstrate. After entering the command, the user
demonstrates the behavior with the keyboard and mouse and
we extract a state-action sequence from the behavior us-
ing BurlapCraft’s demonstration extractor. This command-
action pair is then added to an existing dataset and the lan-
guage model is retrained with an additional Minecraft com-
mand prompt command.

As a demonstration of this application, we taught an agent
about the “go to the gold block™ task that we used in the
previously discussed planning and learning application. In
this case, we gave the agent a single training instance that
consisted of the command “go to the gold block”, with a
user-provided demonstration of walking to the gold block
from two steps away, as shown in Figure 10. After training
the language model on this one demonstration, we gave the
same command to the agent from a state that was further
away from the gold block with a stream of lava separating
the agent from it. As shown in Figure 11, the agent cor-
rectly interpreted the goal and used planning to determine
that it would need to mine the free block to build a bridge,
and then executed the plan. We are also then able to have
this command successfully interpreted and executed in other
dungeon environments, such as the easy maze dungeon.

Although this is an effective application of existing lan-
guage grounding work, the Minecraft environment helps to

2Video available at https://vid.me/H7B1

motivate future research. For example, we imagine users
would want to be able to train an agent to follow commands
like “build a house,” which describes a complex abstract
goal that cannot currently be captured in MacGlashan et al.’s
model or others to our knowledge.

Figure 10: Demonstration provided in the Bridge Dungeon
for the language command ‘go to the gold block’

Figure 11: When issued the language command ‘go to the
gold block’, the agent mines the multi-colored block and
places it on the lava to cross over and the reach the gold
block.

Related Work

In general there two classes of approaches people have used
for training robotics Al systems in virtual worlds: applica-
tions in games and more open ended environment engines.
The Mars Escape game (Chernova, DePalma, and
Breazeal 2011) requires the players to work together to es-
cape Mars before their oxygen supplies run out. The game is
used to study human teamwork, coordination and interaction
by gathering data from the players. This data is used to gen-
erate a behavior model that can be used by an autonomous
robot to perform similar tasks. There are also games like So-
phie’s Kitchen (Thomaz and Breazeal 2007), a virtual house
where the player’s goal is to help Sophie bake a cake, and
the ESP game (Von Ahn 2006), where players need to deter-
mine the contents of images by providing meaningful labels
for them. All these games have a very narrow task scope and
there is additional overhead associated with recruiting actual

users to play and familiarize themselves with the games’ in-
terfaces. On the other hand, a wide variety of tasks can be
modeled quickly in Minecraft and it is popular enough to at-
tract players who are already familiar with the dynamics of
the game.

The Atari Learning Environment (ALE) (Bellemare et
al. 2013) allows Al systems to interface with Atari 2600
games and is typically used in reinforcement learning re-
search. For example, deep belief networks have recently had
much success in outperforming human players in many of
the games (Mnih et al. 2015). Although ALE provides a
larger task scope than some other games used in research, it
is still more narrow than Minecraft which is a sophisticated
enough environment to support the construction of comput-
ers inside its world.

There are also simulation toolboxes like Gazebo (Koenig
and Howard 2004), which have a much wider scope for mod-
eling robotics tasks. Gazebo can be used to rapidly iterate
algorithms, design robots, and perform tests using realistic
scenarios. Nevertheless, it takes a considerable amount of
time to create the simulation of a physical model and train
users to use that simulation.

Our approach with BurlapCraft overcomes a lot of these
problems in four ways: (1) there will not be a learning
curve for most Minecraft users to use the dungeons; (2)
BurlapCraft allows researchers to rapidly create worlds and
experiments; (3) BURLAP has a lot of solvers and models
built-in that can be easily used; and (4) the range of complex-
ity for tasks that can be created in Minecraft is enormous.

There are also many systems that have exploited the com-
positional structure of language to generate symbolic rep-
resentations of the natural language input (Kress-Gazit and
Fainekos 2008; Dzifcak et al. 2009; Skubic et al. 2004;
Tellex et al. 2011). Existing work in dialog systems (Doshi
and Roy 2008; Roy, Pineau, and Thrun 2000; Williams and
Young 2007a; 2007b; Young 2006) use MDP and POMDP
models with a fixed, predefined state space to represent
the user’s intentions. Many of these models require large
amounts of training data to work effectively, data which is
difficult to collect and evaluations that require real-world
studies. We believe interfacing with Minecraft will facilitate
the data gathering process since there is a large user base and
a lot of material written about it online.

As far as using Minecraft itself as a research platform,
Branavan et al. (2012) described a system for learning to
play Minecraft by reading the Minecraft wiki. However they
used a model of Minecraft defined in STRIPs rather than the
actual game, making it difficult for people to interact with
the agent and train it. We also believe that having an agent
actually interact with the real game will introduce complex-
ities that are not otherwise captured in STRIPS models.

Conclusion
This paper introduces a new Minecraft mod, BurlapCraft,
that can be used to model and solve robotics tasks within
a world that has varying complexity making it a useful
test bed for Al in robotics. The ease of designing tasks in
Minecraft and our integration with BURLAP’s range of ex-
tensible learning and planning algorithms allows rapid de-

velopment of a variety of experiments. In this work, we
demonstrated how planning and learning algorithms can be
quickly applied in five different dungeons. We have also
built in the ability to collect demonstrations from users of
the mod which was used for language learning, but could
also be used for other learning from demonstration work.

Our results demonstrate how quickly Minecraft problems
can become challenging for classic planning and learning al-
gorithms and we believe these challenges will motivate the
development of better planning and learning algorithm tech-
niques that can be quickly validated and compared to other
work. MacGlashan et al’s language grounding work that we
applied can only manage modeling simple tasks and cannot
model more complex tasks that we believe users would want
to teach, like building houses. High-level tasks like these
may benefit from hierarchical task structures and can inspire
additional work. In the future, we would like to be able to
leverage the user base that comes with Minecraft to collect
new and interesting data for such tasks and develop algo-
rithms that can support it.

Acknowledgements

This work was supported in part by DARPA under “Hier-
archical, Probabilistic Planning and Learning for Collabora-
tion” grant # W911NF-15-1-0503.

References

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robot. Auton. Syst. 57(5):469—-483.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence
Research 47:253-279.

Brafman, R. I., and Tennenholtz, M. 2003. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. The Journal of Machine Learning Research 3:213—
231.

Branavan, S.; Kushman, N.; Lei, T.; and Barzilay, R. 2012.
Learning high-level planning from text. In Proceedings of
the 50th Annual Meeting of the Association for Computa-
tional Linguistics: Long Papers-Volume 1, 126—-135. Asso-
ciation for Computational Linguistics.

Brown, P. E; Cocke, J.; Pietra, S. A. D.; Pietra, V. J. D.;
Jelinek, F.; Lafferty, J. D.; Mercer, R. L.; and Roossin, P. S.
1990. A statistical approach to machine translation. Comput.
Linguist. 16(2):79-85.

Brown, P. E; Pietra, V. J. D.; Pietra, S. A. D.; and Mercer,
R. L. 1993. The mathematics of statistical machine trans-
lation: Parameter estimation. Comput. Linguist. 19(2):263—
311.

Chernova, S.; DePalma, N.; and Breazeal, C. 2011. Crowd-
sourcing real world human-robot dialog and teamwork
through online multiplayer games. Al Magazine 32(4):100—
111.

Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-
oriented representation for efcient reinforcement learning.

In Proceedings of the 25th international conference on Ma-
chine learning, ICML ’08.

Doshi, F., and Roy, N. 2008. Spoken language interaction
with model uncertainty: an adaptive human-robot interac-
tion system. Connection Science 20(4):299-318.

Dzifcak, J.; Scheutz, M.; Baral, C.; and Schermerhorn, P.
2009. What to do and how to do it: translating natural
language directives into temporal and dynamic logic rep-
resentation for goal management and action execution. In
Proceedings of the 2009 IEEE International Conference
on Robotics and Automation, 3768-3773. Piscataway, NJ,
USA: IEEE Press.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions on

4(2):100-107.

Koenig, N., and Howard, A. 2004. Design and use
paradigms for gazebo, an open-source multi-robot simula-
tor. In Intelligent Robots and Systems, 2004.(IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on,
volume 3, 2149-2154. 1IEEE.

Kress-Gazit, H., and Fainekos, G. E. 2008. Translating
structured English to robot controllers. Advanced Robotics
22:1343-1359.

MacGlashan, J.; Babes-Vroman, M.; desJardins, M.;
Littman, M.; Muresan, S.; Squire, S.; Tellex, S.; Arumugam,
D.; and Yang, L. 2015. Grounding English commands to re-
ward functions. In Robotics: Science and Systems.

MacGlashan, J. 2015. Brown-umbc reinforcement learn-
ing and planning (burlap). http://burlap.cs.brown.edu/. Ac-
cessed: 2015-07-30.

Makuch, E. 2014. Minecraft passes 100 mil-
lion registered wusers, 14.3 million sales on pc.
http://www.gamespot.com/articles/minecraft-passes-100-
million-registered-users-14-3-million-sales-on-pc/1100-
6417972/. Accessed: 2015-08-06.

2014. Minebot. http://www.minecraftforum.net/forums/mapping-

and-modding/minecraft-mods/wip-mods/2283099-
minebot-0-3-released-can-now-store-in-chests-craft.
Accessed: 2015-08-05.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529-533.

Roy, N.; Pineau, J.; and Thrun, S. 2000. Spoken dialogue
management using probabilistic reasoning. In Proceedings
of the 38th Annual Meeting of the Association for Computa-
tional Linguistics (ACL-2000).

Skubic, M.; Perzanowski, D.; Blisard, S.; Schultz, A.;
Adams, W.; Bugajska, M.; and Brock, D. 2004. Spatial lan-
guage for human-robot dialogs. [EEE Trans. on Systems,
Man, and Cybernetics, Part C: Applications and Reviews
34(2):154-167.

Strehl, A.; Diuk, C.; and Littman, M. 2007. Efficient struc-
ture learning in factored-state mdps. In Proceedings of the
National Conference on Artificial Intelligence, volume 22,
645.

Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee,
A.; Teller, S.; and Roy, N. 2011. Understanding natural
language commands for robotic navigation and mobile ma-
nipulation. In Proc. AAAL

Thomaz, A. L., and Breazeal, C. 2007. Asymmetric in-
terpretations of positive and negative human feedback for a
social learning agent. In Robot and Human interactive Com-
munication, 2007. RO-MAN 2007. The 16th IEEE Interna-
tional Symposium on, 720-725. IEEE.

2015. Unity game engine. https://unity3d.com/. Accessed:
2015-08-06.

Von Ahn, L. 2006. Games with a purpose. Computer
39(6):92-94.

Williams, J. D., and Young, S. 2007a. Scaling POMDPs for
spoken dialog management. [EEE Transactions on Audio,
Speech, and Language Processing 15(7):2116-2129.
Williams, J. D., and Young, S. 2007b. Partially observable
Markov decision processes for spoken dialog systems. Com-
puter Speech & Language 21(2):393-422.

Young, S. 2006. Using POMDPs for dialog management.
In IEEE Spoken Language Technology Workshop, 8—13.

