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Abstract—As intelligent robots become more prevalent, meth-
ods to make interaction with the robots more accessible are
increasingly important. Communicating the tasks that a person
wants the robot to carry out via natural language, and training
the robot to ground the natural language through demonstration,
are especially appealing approaches for interaction, since they do
not require a technical background. However, existing approaches
map natural language commands to robot command languages
that directly express the sequence of actions the robot should ex-
ecute. This sequence is often specific to a particular situation and
does not generalize to new situations. To address this problem,
we present a system that grounds natural language commands
into reward functions using demonstrations of different natural
language commands being carried out in the environment.
Because language is grounded to reward functions, rather than
explicit actions that the robot can perform, commands can be
high-level, carried out in novel environments autonomously, and
even transferred to other robots with different action spaces. We
demonstrate that our learned model can be both generalized to
novel environments and transferred to a robot with a different
action space than the action space used during training.

I. INTRODUCTION

For robots and other intelligent agents to be useful to
the general public, they need to be able to autonomously
carry out complex tasks. However, it is equally important
for humans to be able to communicate a desired complex
task to an agent, ideally using natural language commands
instead of a formal machine-oriented task representation. In
this work, we present a method for learning how to ground
natural language commands into high-level reward functions
from demonstrations of the commands being carried out.

Previous approaches to interpreting language for robots
have mapped between natural language and specific planning
languages or feature representations that directly describe the
sequence of actions the robot should perform [14, 21, 16, 15,
6]. In effect, these approaches enable teleoperation through
language. However, in domains where a robot is expected to
assist a human, requiring the human to uniquely specify the
action sequence necessary to complete a task is an undesirable
burden, especially if the environment changes over use cases
(entailing different action sequences to be used for the same
task), or if stochasticity in the environment or actions can
cause a specified action sequence to fail to complete the task.
Ideally, a human would specify the task to be completed
with language, and the robot would then use a planner to be
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creative in its solutions to the task, autonomously resolving
any unforeseen outcomes during execution. For example, the
command “bring me a cup of coffee” should give rise to a
goal that motivates the robot to choose steps for getting to—
or making, if necessary—the coffee and bringing it to the
user, without the user specifying any of those details in the
command. Another advantage of this task-based grounding
is that a language model grounded to tasks can be easily
transferred to different robots with different action sets, since
the robot will use a planner to determine the correct actions.

A straightforward way to learn groundings to reward func-
tions would be to train a semantic language model with a
dataset consisting of pairs of natural language commands
and the corresponding reward function descriptions. However,
providing such a dataset would require a trainer to have a
technical understanding of the task and state representation
of the robot. Our more user-friendly approach to training is
for the user to develop a dataset of commands paired with
demonstrations of the command being carried out.

Our work has two primary contributions: first, a generative
model of tasks, behavior, and language; second, a weakly
supervised learning algorithm that uses our generative model
and a version of inverse reinforcement learning (IRL) [19]
to learn mappings from language to latent reward functions
from a dataset consisting of natural language commands and
demonstrations of the commands being carried out.

We empirically validate our approach using a pick-and-place
domain in which a robot may be tasked with going to different
rooms or taking certain objects to different rooms, using both
a simulated version of the domain and on a physical robot.
Our simulated results demonstrate that our approach transfers
to new environments, significantly outperforming baseline
methods that ground language to actions. Our task-grounding
model performs well both when the test environments are the
same as the training environments and when the environments
are novel. In contrast, an action-grounding model is only able
to perform well in the known environments and fails in novel
environments. We also demonstrate that the learned model that
was trained on simulated data can be transferred to a physical
robot with a different action space that manipulates blocks in
the physical world. The code and datasets for this work are
freely available online.1

II. OBJECT-ORIENTED MARKOV DECISION PROCESSES

To represent tasks, we make use of the Object-oriented
Markov Decision Process (OO-MDP) formalism [8] because it

1https://github.com/jmacglashan/commandsToTasks



is well suited to represent object-based knowledge for planning
under uncertainty that can transfer across different environ-
ments. OO-MDPs extend the conventional MDP formalism
by providing a rich factored state representation that describes
the objects in the environment.

MDPs are defined by a five-tuple: (S, A, T , R, F), where
S is a set of states of the world; A is a set of actions that the
agent can take; T describes the transition dynamics, which
specify the probability of the agent transitioning to each state
given the current state and the action taken; R is a function
specifying the reward received by the agent for each transition;
and F is a set of terminal states that cause action to cease once
reached. The goal of planning in an MDP is to find a policy—a
mapping from states to actions—that maximizes the expected
discounted cumulative reward.

An OO-MDP extends the classic MDP formalism by includ-
ing a set of object classes, each defined by a set of attributes,
and a set of propositional functions whose parameters are
typed to object classes. A state in an OO-MDP is a set of
objects, where each object belongs to one of the possible ob-
ject classes; each object has its own state, which is represented
as a value assignment to the attributes of its associated object
class. The propositional functions defined in the OO-MDP are
functions of the object states being evaluated. For example,
consider a blocks world in which block objects are defined
by their position in the world. The propositional function
evaluation on(b1, b2), where b1 and b2 are block objects in
a state, returns true when the position of b1 is adjacent and
above the position of b2 and false otherwise.

The propositional functions enable an OO-MDP to provide
high-level symbolic information about states that are inher-
ently non-symbolic (e.g., spatial or continuous), which are
often needed in robotics domains. Because OO-MDP states
are defined by a set of objects, different states in the same OO-
MDP can also represent different environments by changing
which objects are present. Since propositional functions op-
erate on objects, the propositional functions generalize across
environments. In this work, we use OO-MDP propositional
functions to define abstract task definitions, which enables
environment-independent symbolic tasks useful for language
grounding to be defined for a variety of different kinds of state
spaces that may not be symbolic themselves.

III. EXECUTION AND LEARNING

In this section, we describe the overall execution and
learning process of our approach. In the next section, we
will detail our generative model of tasks, behavior, and
language that enables these processes. As a running exam-
ple, consider the initial state of our Cleanup World domain
shown in Figure 1. Cleanup World (inspired by Sokoban
[12]) is a 2D grid world of various rooms connected by
open doors. Rooms can also contain “blocks” that can be
moved around. The robot moves using north-south-east-west
actions. Moving into a location containing a block causes
the block to move in the direction the robot is moving. If
a wall or other item is in its immediate path, neither the

Fig. 1: An example three-room layout with two chair objects. The
object references for the red (lower), green (upper left), and blue
(upper right) rooms are r1, r2, and r3, respectively. The references
for the yellow (upper) and blue (lower) chair are o1 and o2.

robot nor the block moves. Cleanup World is represented
as an OO-MDP consisting of four object classes: ROBOT,
BLOCK, ROOM, and DOORWAY. The propositional functions de-
fined for the OO-MDP include robotInRoom(ROBOT, ROOM),
and blockInRoom(BLOCK, ROOM), as well as propositional
functions to indicate the color and type of rooms and blocks
(e.g., roomIsRed(ROOM), blockIsChair(BLOCK)).

Figure 2a shows a flow chart of the execution process.
To illustrate the steps of this process, consider the command
“take the yellow chair to the red room” being given in the
state shown in Figure 1. Using Bayesian inference with the
learned model, the most likely task for the given command
and the state shown in Figure 2a is the goal condition
blockInRoom(o1, r1), because the command uses words for
taking an object to a location, and because the selected objects
satisfy the properties roomIsRed(r1)∧blockIsYellow(o1)∧
blockIsChair(o1), which would have a high probability
of generating the English words in the command. Once the
most likely task has been inferred, a standard plan and
control problem is instantiated, in which the robot uses a
planning algorithm to generate a policy and follows the
policy in a closed loop fashion.2 In this case, planning
would produce a policy that generates the action sequence
SSSEEEENNWNNESSS, where N,S,E,W stand for
north, south, east, and west, respectively. Our approach is
independent of the planning algorithm: it can use any “off-the-
shelf” planning algorithm appropriate for the domain, allowing
our approach to apply to a large variety of robotics domains
as long as enough of the state is observable to perform task
grounding.

Figure 2b shows a flow chart of the learning process for
taking a dataset of demonstrations paired with commands
and learning the parameters of a language model that ground
language to latent task descriptions. Learning requires the set
of OO-MDP propositional functions to which the language is

2The policy does not have to be complete and can optionally use replanning.
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Fig. 2: Flow charts for command execution and learning.

grounded to be known in advance, but it does not require the
words in the natural language command to be known in ad-
vance. Consider the previous command “take the yellow chair
to the red room” and the previously described action sequence
in the role of a command-demonstration training instance.
From the demonstration, inverse reinforcement learning (IRL)
infers the probability that each possible task in the environment
of the demonstration was the task being completed by the
demonstration. The task with the goal blockInRoom(o1, r1)
will have a very high probability compared to other tasks. This
task has many possible descriptions based on the properties of
the objects o1 and o2 to which language could be grounded. In
particular, one such task description is blockInRoom(o1, r1)∧
roomIsRed(r1)∧ blockIsYellow(o1)∧ blockIsChair(o1).
The set of all possible task descriptions for all tasks, weighted
by the probability of their task being the intended one, form a
set of weakly supervised labels for the training command and
are used with a weakly supervised learning algorithm to train
the language model parameters.

Our approach can easily incorporate different language
models. We investigate two language models—a bag-of-words
(BoW) mixture model and IBM Model 2 (IBM2) used in
statistical machine translation [4, 5]—and use expectation
maximization [7] for training them with the weakly labeled
commands. While other language models that incorporate
grammatical knowledge might yield better performance and
robustness, an advantage of these grammar-free models is that
they do not require any additional corpus training and can be
used with our task and behavior model as is.

For the command execution process (Figure 2a), the most
demanding step is the planning, which will increase in com-
plexity as the environment becomes more complex. However,
since different planning algorithms may be used, this approach
will scale to more complex environments as planning algo-
rithms scale. The semantic parsing step (i.e., mapping from
a command to a task via inference on a trained model) is
fast because the set of semantic interpretations is small (much
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Fig. 3: The generative task model, with arrows indicating conditional
dependencies. S is the current state and is an input to the model. L
is the lifted task; T is the grounded task; B is the behavior of the
robot; and C is the object-binding constraints. The language model
is a parameter of our overall generative model.

smaller than the space of a natural language).
The weakly supervised language model learning in our

training process (Figure 2b) is also fast using the expectation
maximization algorithm [7] (see Section V-C). The primary
computational cost lies in performing IRL for each demonstra-
tion. In our framework, performing IRL on a demonstration
requires planning for all the finite possible tasks in the envi-
ronment. As with command execution, the cost of planning for
a task will scale to more complex environments as planning
algorithms scale. In our tests, the number of possible tasks in
the environment was not prohibitive. In domains with a very
large number of tasks per environment, approximate inference
or a scaffolding procedure in which the trainer iteratively trains
the robot with simple environments may be beneficial. We
leave this investigation for future work.

IV. THE GENERATIVE MODEL

Our generative model of tasks, behavior, and language used
for learning and command execution is shown in Figure 3. It
consists of an input initial state (S), a set of lifted tasks (L), a
set of grounded tasks (T ), a set of object-binding constraints
(C), a set of behavior demonstrations/trajectories (B), and a
language model that produces natural language commands and
is dependent on the lifted task and binding constraints. A lifted
task specifies the kinds of problems the robot can solve; a
grounded task binds a lifted task to specific objects in the
world; object-binding constraints specify properties about the
bound objects; and a behavior trajectory is a sequence of states
and actions.

A. Lifted Tasks

The set of possible lifted task definitions is provided by
a designer and represents the kinds of tasks the robot could
conceivably carry out in an environment. Specifically, each
lifted task is a factored reward function defined as a logical
expression of OO-MDP propositional functions with the pa-
rameters of the propositional functions set to free variables.
In our example environment (Figure 1), a reward function for
the task of taking a “block” object (e.g., chair) to a room is:

R(s, a, s′) =

{
1 if blockInRooms

′
(?o, ?r)

0 otherwise
, (1)



where s′ is the outcome state for the robot after taking action a
in state s, blockInRooms

′
is a propositional function evaluated

in state s′, ?o is a free variable that can be grounded to any
movable block object in the environment, and ?r is a free
variable that can be grounded to any room in the environment.
If a task is goal directed, then the reward function will also
be paired with a similar set of termination conditions.

The prior probability distribution on the set of lifted tasks
is assumed to be uniform over the set of lifted tasks that are
permissible in an input state. A lifted task is permissible in an
input state if there exists at least one object of each object class
required by the free variables in the lifted task. For example,
if the input state has no block objects present, then Lifted
Task (1) is not permissible in the state.

B. Grounded Tasks

A grounded task (T ) is dependent on the lifted task and
input state and is an assignment of objects in the input state
to each of the free variables in the lifted task. For example,
given the input state shown in Figure 1, an object assignment
to Lifted Task 1 that represents the task of the robot taking
the yellow chair to the red room is ?o := o1 and ?r := r1.
The probability distribution of grounded tasks is uniform over
the set of possible variable assignments for the lifted task.
In goal-directed tasks, only tasks that are not satisfied in the
initial state are considered. Because our task model starts with
lifted tasks that are defined with free variables and then finds
all possible groundings in the current input state, it generalizes
to environments with any number of objects present.

C. Object-Binding Constraints

If language was only dependent on the lifted task, it would
be impossible for the robot to determine which of the possible
grounded tasks for an input state was the intended task
from a command. Object-binding constraints (C) are logical
expressions that extend a lifted task and on which language is
dependent, enabling the robot to resolve grounding ambiguity.
For example, the command “take the yellow chair to the red
room” indicates that a grounding for Lifted Task 1 should
satisfy the constraints isYellow(?o) ∧ isRed(?r).

The probability distribution of object constraints given a
grounded task, lifted task, and input state is uniform across
the set of possible conjunctions of propositional functions that
are true in the input state for the given variable assignments in
the grounded task. For example, if ?o is assigned to o1 in the
grounded task, isYellow(?o), is a possible constraint since it
is true in the initial state for o1, but isBlue(?o) is not.

D. Behavior

A behavior trajectory is a sequence of state–action pairs
that the robot can experience from an input state and is
conditionally dependent on the grounded task and input state.
The conditional probability of the behavior, given the task,
is formulated by treating each action selection in each state
of the trajectory as an independent event and by defining the
action-selection probability distribution as a noisy version of

the policy computed by an “off-the-shelf” planning algorithm.
Following maximum likelihood inverse reinforcement learn-
ing [1], we use a Boltzmann distribution over the optimal Q-
values as the noisy policy. The probability of any behavior
trajectory b (of length N ) given task t is defined as:

Pr(b|t) =
N∏
i

πt(si, ai), (2)

where (si, ai) is the ith state–action pair in behavior trajectory
b and πt(si, ai) is the noisy policy distribution under task t
(the probability of taking action ai in state si).

For goal-directed tasks, we add a virtual “terminate” action
to the MDP that must be executed to actually terminate the
task; this virtual terminate action is added to the end of
observed trajectories. The inclusion of a terminating action
more strongly differentiates between tasks where the optimal
trajectory for one task is a subsequence of the optimal trajec-
tory for another. For example, an optimal trajectory for going
to the red room is a subsequence of an optimal trajectory
for going to the blue room (in Figure 1), but since it is not
expected for the robot to terminate in the red room if the task
is to go the blue room, terminating in the red room makes it
more likely for the trajectory to be generated by a “go to the
red room” task.

V. LANGUAGE MODELS

We investigated two grammar-free language models for use
with our task model: a BoW model and IBM Model 2.

A. Bag-of-Words
In the bag-of-words (BoW) model, commands are treated

as an unordered bag of words generated from a mixture model
of semantic components, similar to previous topic modeling
approaches [17]. The semantic components, given a lifted
task and object-binding constraints, include (1) the set of
propositional function names included in the task and binding-
constraint expressions, (2) the object class names of the argu-
ments of the propositional functions, and (3) a constant symbol
(#) that acts as a catchall for words not explicitly related to a
semantic component. For example, Lifted Task 1 coupled with
the constraint isRed(?r) would have the semantic components
blockInRoom, isRed, BLOCK, ROOM, and #. The probability
that any semantic component is selected to generate a word
is proportional to its frequency of appearance in the task and
binding-constraint expressions.

The parameters of the BoW model are the conditional
probabilities that any word will be generated from a given
semantic component. Therefore, the probability of a command
(e) given a lifted task (l) and object-binding constraints (c) is

Pr(e|l, c) =
∏
w∈e

[∑
v

Pr(v|l, c)θvw

]K(w,e)

, (3)

where θvw is a parameter specifying the conditional proba-
bility that the natural language word w is generated given
semantic component v, and K(w, e) is the number of times
that word w appears in command e.



B. IBM Model 2

IBM Model 2 (IBM2) [4, 5] is a word-based statistical
machine-translation model. In machine translation, the task is
to translate a sentence from a source language f (e.g., French)
to a target language e (e.g., English). Our task corresponds to
the problem of translating from an English command e to its
corresponding machine-language command m.

We integrate IBM2 into our task and behavior model by
using the lifted task and object-binding constraints to deter-
ministically generate a machine-language command m and
then generate the natural language command e from m in the
standard IBM2 fashion. A machine-language command (m) is
generated from a lifted task (l) and object-binding constraints
(c) by first adding each semantic component in l to m in the
order that the components appear. Next, the same is done for
the components of c. For example, Lifted Task 1 and object-
binding constraint isRed(?r) would generate the machine-
language command “# blockInRoom BLOCK ROOM isRed
ROOM,” where # is the constant symbol that IBM2 always
assumes to be present at the start of an expression. The
probability of a natural language command (e) given the
machine-language command (m) is defined as:

Pr(e|m) = η(ne|nm)
∑

a

∏ne

j q(aj |j, nm, ne)r(ej |maj ), (4)

where η(ne|nm) is the parameter specifying the probabil-
ity that a machine-language command of length nm would
generate a natural language command of length ne; a is a
possible alignment from natural language words to machine-
language words; q(aj |j, nm, ne) is the alignment parameter
specifying the probability that the natural language word in
position j would be aligned with the machine-language word
in position aj for a machine-language command of length nm
and natural language command of length ne; and r(ej |maj

) is
the translation parameter specifying the probability that natural
language word ej would be generated from machine-language
word maj

. The number of alignments (a) is typically very
large, so in practice we estimate the value using sampling.

C. Learning Language Model Parameters

Given a dataset of trajectory demonstration and natural
language command pairs, the language model parameters can
be learned through weakly supervised learning.

When the task and behavior model is paired with the
BoW language model, we use a standard Bayesian Network
expectation maximization (EM) algorithm [7] to iteratively
update the BoW model’s word generation parameters.

In classic IBM2 parameter learning, EM is used on a
training dataset consisting of pairs of natural language ex-
pressions (e.g., French and English), often with a “bake-in”
period, during which only translation parameters are updated,
followed by a normal learning phase during which transla-
tion parameters and alignment parameters are updated. We
follow the same approach here, except in our case, we have
pairs of machine-language commands and English commands,
and the contribution of the expectation of machine-language
commands is weighted by the probability of being generated

given the demonstration (see Section III). The probability of
any machine-language command (m) given a trajectory (b) and
initial state (s) is:

Pr(m|s, b) ∝
∑

l,t,c Pr(l|s) Pr(t|s, l) Pr(b|t) Pr(c|s, l, t) Pr(m|l, c). (5)

VI. EXPERIMENTAL RESULTS

To empirically validate our approach, we collected example
language for “Cleanup World” from two different sources: an
Amazon Mechanical Turk (AMT) study and an “expert” who
is an author of this paper, and test them separately. In the
AMT study, we asked users to provide example commands
for a smaller range of tasks, but used more abstract object
representations and unusual color choices to elicit more variety
in the command descriptions. In the expert study, we evaluated
a larger range of tasks and environments but with fairly
clean expressions of the language. The details of the various
experiments are explained below. We also transfer the learned
model from simulation onto a physical robot with a different
action space than the one used in training.

In both studies, the Boltzmann policy parameter τ was
set to 0.005. Since we knew the tasks that the training
commands were meant to describe, performance was measured
using leave-one-out (LOO) cross validation on the collected
training examples; a prediction was considered correct if the
interpretation of the reward function resulted in behavior that
achieved the actual goal.

For a baseline, we compared to an action-grounding model
that grounds language to actions rather than tasks. Because
the order of the actions is important, we always paired the
baseline with the IBM2 language model. When training the
IBM2 model, the action sequence in the demonstration is
converted into a machine-language sentence in which each
word is the name of the action. Note that the action-grounding
learning problem is in some sense easier than training the task
model, since the action sequence is always directly observed in
the demonstration, whereas in our task grounding model, the
task is latent. Inferring an action sequence from a command
would generally require searching the action sequence space
and finding the most likely sequence from the command or at
least using it to bias a planning algorithm’s search, similar to
the work of Chen and Mooney [6]. However, we simplify this
inference problem greatly by allowing the action-grounding
model to exploit our task model. Specifically, when inferring
an action sequence for a command, the only valid action
sequences permitted are those that solve one of the possible
grounded tasks; the baseline always chooses the most likely
of the possible sequences.

A. AMT Dataset

In the AMT study, we considered two different lifted tasks:
the robot going to a specific room and the robot moving
a block to a specific room. To collect natural language in-
structions for different grounded versions of these tasks, we
presented Turkers on AMT animated images showing either
the robot moving to a room of a specific color or moving a
star block to a room of a specific color with demonstrations



Fig. 4: An example task to take a star to a room shown to users on
AMT. The left frame shows the initial state and the path to the star;
the right frame shows the path from there to the end state. (In the
actual study, users were shown an animated image without arrows.)

in our simulation ranging from 3 to 19 action steps in length.
An example image from the animation is shown in Figure 4.
To prevent contamination of the commands we received, we
never provided users with any example commands.

After removing sentences that did not follow the instructions
or were provided by users who did not understand the labeling
task, we obtained a dataset of 240 instances. In practice, we
envision our system primarily being trained by individual users
iteratively training their robots, so this kind of post-filtering
would not be necessary.

The goal of our work is to be able to give autonomous
robots high-level commands that leave the details of how
to complete the task as a problem for the robot to solve.
However, most of the natural language commands we received
included some high-level details of the path the robot followed
(e.g., subgoals), rather than only describing the task goal. For
example, one such command was “go through center opening
into beige enclosure and get behind star and push it into
opening of orange enclosure.” Although this data is interesting
because it tests our model’s performance on language that it
was not intended to model, a dataset that better reflects the
problem we were trying to solve is also useful for comparison.
Therefore, in addition to this source dataset, we created a
simplified version that omits the text that is extraneous to the
task description. For instance, the previous example became:
“go through center opening and get behind star and push it
into opening of orange enclosure,” which omits the beige room
subgoal. The average command lengths (in words) were 13.57
and 8.87 in the original and simplified datasets, respectively.
We tested our approach on both the original dataset and this
simplified version.

In the training data we gathered from users, the room
layout was always the same; however, one of the advantages
of our approach is that commands can generalize to novel
environments. To demonstrate the ability for our approach to
generalize to new environments, we created a third dataset
in which we used LOO cross validation for the language on
the original (unmodified) dataset and tested each command on
three different novel environments. These environments had
both different spatial arrangements of the rooms and starting
conditions (e.g., in which room a block is located) for the robot

not seen in the training environments. As a consequence, our
task model could perform worse if, during training, it overfit
the object-binding constraints to inappropriate features. We
refer to this dataset as the novel environment (NE) dataset.

The LOO accuracy for each grounding model and the paired
language model on each variant of the dataset is shown in
Table I. Note for comparison that if the robot randomly
selected a permissible grounded task, it would achieve an
expected accuracy of 37.5% in the simplified and original
dataset and 33.3% accuracy in the NE dataset.

On the simplified dataset, task grounding with both BoW
and IBM2 performed well and comparably (according to a
chi-squared test, BoW and IBM2 are not statistically different;
p = 0.54). However, while action grounding was able to per-
form better than randomly guessing, it did not perform as well
as the task-grounding cases; the difference was statistically
significant (p < 0.001 on a chi-squared test with all groups).

On the original dataset, task grounding performance
dropped for both language models, although BoW’s drop in
performance was much greater than IBM2’s drop in perfor-
mance and, of the two, only BoW’s drop in performance was
statistically significant (p < 0.01 and p = 0.07 for BoW
and IBM2’s decrease in performance, respectively). The action
grounding baseline performed identically to its performance
on the simplified dataset and is reasonably comparable to task
grounding using IBM2.

On the NE dataset, both variants of the task model were
able to successfully generalize from the training data to the
novel environments, achieving nearly the same performance
as their performance on the original dataset for the corre-
sponding language model. In contrast, the action grounding
baseline completely failed to generalize from its training data,
achieving a performance worse than what would be expected
from randomly choosing tasks.

To demonstrate that task grounding with IBM2 successfully
learned reasonable groundings of English words, we extracted
IBM2’s translation parameters after it had finished training
on the original dataset. The most likely English words gener-
ated from the semantic predicate “robotInRoom” (which was
associated with the lifted “go to room” task), were “walk,”
“through,” “move,” “go,” and “from.” “From” and “through”
occurred because in “go to room” tasks, users often described
from which room to leave and often commanded the robot to
go through a door to the goal room. For example, one of the
commands provided was “walk through doorway from orange
room to beige room.”

Since the room color was typically used to describe the
target room, the words associated with it are especially rele-
vant. The “roomIsOrange” semantic predicate was most likely
to generate the words “red” and “orange;” “roomIsTan” was
most likely to generate the words “tan” and “beige;” and
“roomIsTeal” was most likely to generate “green” and “blue.”

B. Expert Dataset

The expert dataset includes three kinds of goal-directed
lifted tasks: one for going to a room; one for taking a block



Grounding Model Simplified Dataset Original Dataset NE Dataset

Task (BoW) 83.75% 53.75% 51.80%
Task (IBM2) 81.25% 74.16% 73.33%
Action (IBM2) 69.58% 69.58% 21.94%

TABLE I: LOO accuracy for the AMT datasets.

to a room; and one for taking a block to a room and then
going to another room. Environments had either one or two
blocks present (chairs, or bags, or both), and three red, green,
or blue rooms. The dataset consisted of many different verbal
descriptions of tasks, which also resulted in different necessary
object-binding constraints that would need to be inferred. For
example, some expressions took the form of “move the bag to
the blue room,” which requires object-binding constraints for
the shape of the block (bag) and the color of the destination
room. Others had the form “move bag to the room with
chair,” which requires inferring object-binding constraints for
the shape of the target block, and a blockInRoom and a block-
shape propositional function to disambiguate the target room.
Different commands also had variable levels of specificity. For
example, some included information that was not necessary
to infer the correct task, such as “push chair from blue room
to red room,” in which specifying the color of the room in
which the chair initially resides (blue) is unnecessary when
there is only one chair. We also included commands that could
not be modeled with the propositional functions defined. For
example, the command “go to left room” is not representable
because there are no propositional functions defined that
indicate the relative spatial position of the rooms.

A strength of our framework is that different demonstrations
of a command, even suboptimal ones, can be given and
still provide meaningful information. In our dataset, we have
35 additional instances of a command given in the same
environment, but with a different demonstration. However, to
ensure that the LOO evaluation is always inferring behavior
from either a novel command or a novel environment, we
also created a version of the dataset that did not include any
duplicate commands unless they were given in a different
environment. We will refer to the dataset without multiple
demonstrations in the same environment as expert and the
dataset with multiple demonstrations as expert-MD. The expert
dataset has 118 instances, with 104 unique commands (14 of
the commands are the same as another, but are given in a
different environment); expert-MD has 153 instances.

The LOO performance of the expert datasets is shown in
Table II. As a baseline, if the robot randomly selected a
possible grounded task, it would have an expected performance
of 8.7% and 8.6% for the Expert and Expert-MD datasets, re-
spectively. On both the Expert and Expert-MD dataset, our task
model with IBM2 performed the best and these differences
were statistically significant (p = 0.013 on a chi-squared test
with all three groups). Furthermore, IBM2 performed better on
Expert-MD than Expert (and the differences were statistically

Grounding Model Expert Expert-MD

Task (BoW) 48.30% 52.28%
Task (IBM2) 65.25% 79.73%
Action (IBM2) 49.15% 49.67%

TABLE II: LOO accuracy for the expert datasets.

significant with p = 0.011), whereas BoW and Action Ground-
ing did not improve performance by any significant amount,
suggesting that even better performance with task grounding
with IBM2 may be possible with additional data, even if that
data uses different demonstrations than prior examples.

C. Transferring the Learned Model to a Different Robot

One of the strengths of grounding language to high-level
tasks is that the learned model can be transferred to different
robots with a different set of actions, because each robot can
plan independently for each reward function. We demonstrate
this transferability after training in our simulated version of the
Cleanup World by taking the learned model and providing it
to an actual mobile robot whose action space consists of three
actions: turning 90 degrees clockwise or counterclockwise and
moving forward a fixed distance, rather than moving north,
south, east, or west as in the simulator in which training was
performed. To execute a policy, the robot needed to know its
location and the location of block objects in the world, which
was determined by using a motion tracking camera system.
We imagine our approach could be applied to a more complex
environment by letting the robot localize itself within a map
generated by a SLAM solver. A video of the robot executing
the AMT-gathered command “bring star to beige room” can
be found online3 and images from the execution sequence are
shown in Figure 5.

This demonstration highlights another advantage of our
approach that grounds to tasks instead of actions: the real
world introduces a number of sources of noise in the actu-
ators and perception that make following an action sequence
ineffective. In Figure 5b, we find that the robot has overshot,
positioning itself directly behind the block. Even if we had
successfully trained our model to ground to actions in this
robot’s action space, this failure in outcome expectation would
cause the rest of the action sequence to fail to achieve the goal.
Because our model grounds commands to tasks and follows a
corresponding policy, the robot corrects itself (Figure 5c) and
then completes the task (Figure 5d).

VII. RELATED WORK

Our work relates to the broad class of methods for grounded
language learning that aim to ground words from a situated
context. Instead of using annotated training data consisting
of sentences and their corresponding semantic representa-
tions [13, 24, 27, 26], most of these approaches leverage non-
linguistic information from a situated context as their primary
source of supervision.

3https://vid.me/Wfxx



(a) (b) (c) (d)

Fig. 5: Images from our mobile robot executing the command “bring star to beige room.” The room colors are hard coded to the different
regions outlined by the walls (top left, right, and bottom room colors are beige, orange, and teal, respectively) and the orange block is
mapped to the “star” object that AMT users were shown. Image (a) shows the initial state. The robot moves to position itself behind the
block, but due to evnironmental noise, overshoots (b); it then adapts, repositioning itself (c), and pushes the block into the target room (d).

These approaches have been applied to various tasks, the
ones closest to ours being interpreting verbal commands in
the context of navigational instructions [23, 6, 10], robot
manipulation [9, 22, 11], and puzzle solving and software
control [3]. Reinforcement learning has been applied to train
a policy to follow natural language instructions for software
control and map navigation [23]. However, our goal is to move
away from low-level instructions that correspond directly to
actions in the environment to high-level task descriptions ex-
pressed using complex language. Unlike previous approaches
that learn word groundings from pairs of natural language
instructions and demonstrations of corresponding high-level
actions [22, 9] or approaches that try to fill in the gaps when
the learned actions do not match [18], our method learns
mappings of natural language instructions to task descriptions
represented as OO-MDP reward functions, enabling the robot
to be autonomous and creative in its solutions to problems that
it may never have encountered in training. Our work is most
closely related to Howard et al. [11]; both approaches map
between language and an abstract, goal-based representations
that enables creative solutions to problems. However, Howard
et al. focus on mapping to planning constraints for motion
planning, whereas our approach maps to reward functions
that can represent different classes of problems and handle
planning under uncertainty.

In addition, our generative model allows an investigation of
multiple language models that can be used with the task model.
Besides the generally used BoW model [2, 23], we showed that
a word-based statistical machine-translation model provides
better results. The idea of using statistical machine translation
approaches for semantic parsing was introduced by Wong and
Mooney [24] in a supervised learning setting, although they
map to an action-based representation rather than using reward
functions. In future work, we plan to move beyond word-
based SMT models to grammar-based SMT models such as
Synchronous Context-Free Grammars [25].

VIII. CONCLUSION

We presented a novel generative task model that expresses
tasks as factored MDP reward functions, and to which natural
language commands can be grounded. This generative task
model is flexible and can be combined with different language
models. We further showed how our model enables task

groundings to be learned indirectly from example demonstra-
tions by using IRL to weakly supervise the language model
learning. Grounding natural language commands to MDP
tasks rather than actions is a powerful approach because it
allows people to provide robots high-level commands without
specifying the details of how to complete the tasks; allows
commands to be carried out in novel environments; enables
autonomous adaptation to noise in the environment or actions;
and can be transferred to robots with different action spaces.

In this work, our robotics task was fairly simple to facilitate
gathering commands from an AMT study. However, because
our approach is independent of the planning algorithm, and
because only the task description (rather than the state space)
needs to be symbolic, we believe our approach can scale to a
variety of more complex robotics tasks, as long as enough
of the state is observable to perform task grounding. For
example, this work should scale to robotics domains like
forklift manipulation [20].

Currently, our tasks are described as logical expressions
over a set of free variables. In the future, this could be
extended to include first-order logic quantifiers. Because tasks
are represented with reward functions, our approach could also
incorporate continuing tasks, rather than goal-directed tasks.

Task grounding requires the robot to know about the state of
the objects a human refers to in their command. In the future,
it would be useful to relax this constraint so that the robot can
infer the existence of unobserved objects in the world being
described. This functionality might be incorporated by adding
to the generative model the generation of additional objects
not observed in the input state.

Finally, although our ultimate goal is for the robot to fully
solve tasks itself, for particularly challenging tasks, it may be
useful to extend our approach to allow the human to specify
subgoals that simplify the planning task for the robot.
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